en type maskinlæring From Wikipedia, the free encyclopedia
Dyp læring (engelsk: deep learning) er en læreprosess som en bruker til å trene opp dataalgoritmer ved hjelp av såkalte kunstige nevrale nettverk (også kjent som «nevrale nettverk»). Dybden i dyp læring viser til at de kunstige nevrale nettverkene har mange lag av beregningsenheter, såkalte nevroner. Data må gjennomgå mer enn to lag med ikke-lineære transformasjoner for at læringa og det nevrale nettverket kan karakteriseres som dypt.
Dyp læring er en sentral metode innen maskinlæring – hvor det er et prinsipp at datamaskiner skal tilegne seg kunnskap og lære om noe de ikke vet eller kan fra før fra de data de blir tilført.[1] Dyp læring er basert på et sett med algoritmer som forsøker å modellere abstraksjoner i data på høynivå ved å bruke mange beregningslag med komplekse strukturer, som består av affine og ikke-lineære transformasjoner.[2][3] Læreprosessen kan være styrt (også kalt veiledet, eller på engelsk: supervised), halv-styrt (delvis veiledet) eller ikke-styrt (ikke-veiledet). Dyp læring har hatt en stor innvirkning på områder som bildeklassifisering, datamaskinsyn (engelsk: computer vision), språkbehandling, biostatistikk og lydgjenkjenning.[3][4] Metodikken står bak en stor andel av nyvinningene det siste tiåret innen kunstig intelligens.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.