Loading AI tools
Van Wikipedia, de vrije encyclopedie
Hoofdrekenen is het maken van berekeningen uit het hoofd, dus met gebruikmaking van de eigen hersencapaciteit en zonder bij het rekenen gebruik te maken van hulpmiddelen zoals een rekenmachine of pen en papier. Bij het hoofdrekenen gebruikt men vaak technieken die speciaal ontwikkeld zijn voor bepaalde typen berekeningen, en van parate kennis, relaties tussen getallen en eigenschappen van bewerkingen.
Sommigen verstaan onder hoofdrekenen niet hetzelfde als rekenen uit het hoofd, en laten toe dat tussenberekeningen op papier worden gemaakt. In dat geval is hoofdrekenen dus niet de tegenpool van schriftelijk rekenen.[1]
Hoofdrekenen zorgt er onder andere voor dat men inzicht in berekeningen krijgt en zodoende niet klakkeloos accepteert wat wordt uitgerekend, zoals het trucje van de ober die zegt dat tachtig cent plus tachtig cent één euro tachtig is.
Ruwweg kunnen bij hoofdrekenen drie methoden worden toegepast:
Rekenen volgens de rijgmethode is een grondvorm van hoofdrekenen. Bij optellen en aftrekken met de rijgmethode wordt het eerste getal intact gelaten en het tweede gesplitst. Dit tweede getal wordt al of niet in delen (rijgend) aan het eerste getal toegevoegd of ervan afgehaald. De lege getallenlijn kan hierbij als ondersteunend model dienen
Een opgave als 325 – 249 kan met de rijgmethode als volgt worden opgelost:
De rijgende aanpak kan met een pijlenschema worden weergegeven:
Bij rijgend vermenigvuldigen wordt het vermenigvuldigtal als geheel opgevat en een aantal keren samengenomen via herhaald optellen of verdubbelen. Een opgave als 6 x 48 kan door middel van de rijgmethode als volgt worden opgelost:
Bij rijgend delen wordt de deler een aantal keren van het deeltal afgetrokken. Dat kan door middel van herhaald aftrekken of opvermenigvuldigen.
Een opgave als 78 : 6 kan met de rijgmethode als volgt worden uitgerekend:
Rekenen volgens de splitsmethode is een grondvorm van hoofdrekenen. Bij optellen volgens de splitsmethode worden beide getallen gesplitst. Dit kan in honderdtallen, tientallen en eenheden, of in andere splitsingen. De gesplitste onderdelen worden apart samengevoegd en daarna opgeteld.
Een opgave als 325 + 243 kan met de splitsmethode als volgt worden opgelost:
Ook bij aftrekken volgens de splitsmethode worden beide getallen gesplitst. Dit kan in honderdtallen, tientallen en eenheden, of in andere splitsingen. De gesplitste onderdelen worden apart van elkaar afgehaald. Daarna worden de resultaten hiervan bij elkaar genomen.
Een opgave als 385 – 249 kan met de splitsmethode als volgt worden uitgerekend:
Bij vermenigvuldigen volgens de splitsmethode wordt het vermenigvuldigtal gesplitst. Dit kan in honderdtallen, tientallen en eenheden, of in andere splitsingen. De gesplitste onderdelen worden apart vermenigvuldigd en daarna opgeteld.
Een opgave als 6 x 48 kan met de splitsaanpak als volgt worden uitgerekend:
Onder de varia-methode vallen die aanpakken waarbij het oplossen van (context)opgaven handig gebruik wordt gemaakt van parate kennis, relaties tussen getallen en eigenschappen van bewerkingen. Voorbeelden van deze aanpakken zijn:
Tot het hoofdrekenen hoort het opzeggen van de tafels van vermenigvuldiging. Maar ook allerlei "handigheidjes", zoals de omzetting:
en bijvoorbeeld door:
en het toepassen van algemene formules, zoals de merkwaardige producten
waarbij dan voor a een dichtbijgelegen rond getal genomen wordt. Voorbeeld:
Het kwadrateren van de getallen 15, 25, ..., 95 gaat heel snel door het voorste cijfer met 1 te verhogen en te vermenigvuldigen met het voorste cijfer en achter het resultaat 25 te zetten. Bijvoorbeeld:
Een meer geavanceerde manier van hoofdrekenen maakt gebruik van logaritmetafels. Als men de logaritmes van 1 tot en met 100 uit het hoofd kent, wordt vermenigvuldigen vereenvoudigd tot het optellen van de logaritmes van beide getallen, en de uitkomst weer terugvinden via de in het hoofd opgeslagen logaritmetafel. De bekende Nederlandse hoofdrekenaar Wim Klein maakte onder meer hiervan gebruik. Wim Klein haalde ooit het Guinness Book of Records door binnen anderhalve minuut de 13de-machtswortel van een getal van 100 cijfers te berekenen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.