സീമാൻ പ്രഭാവം
From Wikipedia, the free encyclopedia
From Wikipedia, the free encyclopedia
കാന്തികക്ഷേത്രത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ സ്പെക്ട്രൽ രേഖകൾ വിവിധ ഘടകങ്ങളായി പിരിയുന്ന പ്രതിഭാസമാണ് സീമാൻ പ്രഭാവം. ഡച്ച് ഭൗതികശാസ്ത്രജ്ഞനായ പീറ്റർ സീമാനാണ് 1896-ൽ ഈ പ്രഭാവം കണ്ടെത്തിയത്. സീമാന്റെ അദ്ധ്യാപകനായിരുന്ന ഹെൻഡ്രിക് ലോറെന്റ്സ് ഇതിന് സൈദ്ധാന്തികമായ വിശദീകരണം നൽകുകയും ചെയ്തു. ഇരുവരും 1902-ലെ ഭൗതികശാസ്ത്രത്തിനുള്ള നോബൽ സമ്മാനം പങ്കിട്ടു[1]. വൈദ്യുതമണ്ഡലത്തിലെ തത്തുല്യമായ പ്രഭാവം സ്റ്റാർക് പ്രഭാവം എന്നറിയപ്പെടുന്നു.
പീറ്റർ സീമാൻ | ഹെൻഡ്രിക് ലോറെന്റ്സ് |
ന്യൂക്ലിയർ മാഗ്നെറ്റിക് റെസൊണൻസ് (NMR), ഇലക്ട്രോൺ സ്പിൻ റെസൊണൻസ് (ESR), മാഗ്നെറ്റിക് റെസൊണൻസ് ഇമേജിങ്ങ് (MRI), മോസ്ബോവർ സ്പെക്ട്രോസ്കോപ്പി എന്നീ പ്രധാനപ്പെട്ട സ്പെക്ട്രോസ്കോപ്പിക് സങ്കേതങ്ങളിൽ സീമാൻ പ്രഭാവം കാര്യമായ പങ്കു വഹിക്കുന്നു. ആഗിരണരേഖകളിൽ ഈ പ്രഭാവം കാണപ്പെടുമ്പോൾ ഇൻവേഴ്സ് സീമാൻ പ്രഭാവം എന്നറിയപ്പെടുന്നു.
കാന്തികക്ഷേത്രത്തിന് വികിരണത്തിനുമേലുള്ള സ്വാധീനത്തെക്കുറിച്ച് ആദ്യമായി പഠിക്കാൻ ശ്രമിച്ചത് മൈക്കൽ ഫാരഡേ ആയിരുന്നു[2]. 1862-ൽ സോഡിയത്തിന്റെ D രേഖ ഒരു കാന്തത്തിന്റെ ധ്രുവങ്ങൾക്കിടയിലൂടെ കടത്തിവിട്ട് അതിൽ മാറ്റങ്ങൾ വരുന്നുണ്ടോ എന്ന് നിരീക്ഷിക്കാൻ അദ്ദേഹം ശ്രമിച്ചു. എന്നാൽ തന്റെ ഉപകരണങ്ങളുടെ അപര്യാപ്തത മൂലം മാറ്റങ്ങളൊന്നും അദ്ദേഹത്തിന് കാണാനായില്ല.
1896-ൽ ലെയ്ഡൻ സർവകലാശാലയിൽ ജോലി ചെയ്തിരുന്ന കാലത്ത് കൂടുതൽ ശക്തിയുള്ള സ്പെക്ട്രോസ്കോപ്പുപയോഗിച്ച് കാന്തികക്ഷേത്രത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ ഒരു സ്പെക്ട്രൽ രേഖ മൂന്നായി വിഭജിക്കപ്പെട്ടത് കാണാന് സീമാന് സാധിച്ചു. കാമർലിങ് ഓൺസിന്റെ കീഴിൽ ജോലി ചെയ്യുകയായിരുന്ന സീമാന് പരീക്ഷണത്തിന് അനുവാദം ലഭിക്കാഞ്ഞതിനാൽ ഓൺസിന്റെ അഭാവത്തിലായിരുന്നു ഈ പരീക്ഷണം നടത്തിയത്. തദ്ഫലമായി സീമാൻ സർവകലാശാലയിൽ നിന്ന് പുറത്താക്കപ്പെട്ടു[3].
കാമർലിങ് ഓൺസ് തന്നെ ഈ പരീക്ഷണഫലങ്ങൾ 1896 ഒക്ടോബർ 31-ന് ആംസ്റ്റർഡാമിലെ നെതർലാൻഡ്സ് റോയൽ അക്കാഡമി ഓഫ് ആർട്ട്സ് ആൻഡ് സയൻസസിന്റെ സമ്മേളനത്തിൽ പുറത്തുവിട്ടു. ലെയ്ഡൻ സർവകലാശാലയിൽത്തന്നെ ജോലി ചെയ്യുകയായിരുന്ന ഹെൻഡ്രിക് ലോറൻസ് അവിടെവച്ചാണ് സീമാന്റെ പരീക്ഷണഫലങ്ങളെക്കുറിച്ച് അറിഞ്ഞത്. ഉടൻ തന്നെ വൈദ്യുതകാന്തികതരംഗങ്ങളെക്കുറിച്ചുള്ള തന്റെ സിദ്ധാന്തമുപയോഗിച്ച് പരീക്ഷണഫലങ്ങൾ സീമാന് വിശദീകരിച്ചുകൊടുക്കാൻ അദ്ദേഹത്തിന് സാധിച്ചു.
1902-ലെ ഭൗതികശാസ്ത്രത്തിനുള്ള നോബൽ സമ്മാനം ഈ കണ്ടുപിടിത്തത്തിന് സീമാനും ലോറെന്റ്സും പങ്കിട്ടു.
സാധാരണ ആറ്റങ്ങളിൽ ഇലക്ട്രോണുകളുടെ ക്വാണ്ടം സംഖ്യകൾ വ്യത്യാസപ്പെടുന്നതിനനുസരിച്ച് അവയുടെ ഊർജ്ജവും വ്യത്യാസപ്പെടും. എന്നാൽ ഒന്നിലധികം ഇലക്ട്രോണിക് കോൺഫിഗറേഷനുകൾ ഒരേ ഊർജ്ജത്തിന് കാരണമായേക്കാം. ഇങ്ങനെ വരുമ്പോൾ വ്യത്യസ്ത ക്വാണ്ടം സ്ഥിതികൾ തമ്മിലുള്ള പരിവർത്തനം ഒരേ സ്പെക്ട്രൽ രേഖയ്ക്ക് കാരണമായേക്കാം.
കാന്തികക്ഷേത്രവും ഇലക്ട്രോണുകളും തമ്മിലുള്ള പ്രവർത്തനം ഇലക്ട്രോണുകളുടെ ക്വാണ്ടം സംഖ്യകളെ അനുസരിച്ചിരിക്കുന്നു. അതിനാൽ കാന്തികക്ഷേത്രത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ വ്യത്യസ്ത ക്വാണ്ടം സ്ഥിതികളിലുള്ള ഇലക്ട്രോണുകളുടെ ഊർജ്ജത്തിന് വ്യത്യസ്ത അളവുകളിൽ മാറ്റം വരുന്നു. ഇങ്ങനെ മുമ്പ് ഒരേ ഊർജ്ജമുണ്ടായിരുന്ന ക്വാണ്ടം സ്ഥിതികളുടെ ഊർജ്ജത്തിലെ തുല്യത നഷ്ടപ്പെടുന്നു. ഒരേ അളവിൽ ഊർജ്ജം പുറത്തുവിട്ടിരുന്ന ക്വാണ്ടം സ്ഥിതിപരിവർത്തനങ്ങൾ ഇങ്ങനെ വ്യത്യസ്ത അളവ് ഊർജ്ജം പുറത്തുവിടുന്നതിനാൽ ഒരു സ്പെക്ട്രൽ രേഖ അടുത്തടുത്തുള്ള കുറേ സ്പെക്ട്രൽ രേഖകളായി മാറുന്നു. ഇതാണ് സീമാൻ പ്രഭാവത്തിന്റെ ഉത്ഭവം.
ചിത്രത്തിലേതുപോലെ കാന്തികക്ഷേത്രത്തിന്റെ അഭാവത്തിൽ a,b,c എന്നീ ക്വാണ്ടം സ്ഥിതികളിലും d,e,f എന്നീ ക്വാണ്ടം സ്ഥിതികളിലും ഇലക്ട്രോണുകൾക്ക് ഒരേ ഊർജ്ജമാണെന്ന് കരുതുക. a,b,c എന്നീ സ്ഥിതികളിലേതിലെങ്കിലും ഉള്ള ഇലക്ടോൺ d,e,f എന്നീ സ്ഥിതികളിലേതിലേക്ക് മാറിയാലും ഒരേ സ്പെക്ട്രൽ രേഖയ്ക്കാണ് ഇത് കാരണമാവുക.
കാന്തികക്ഷേത്രത്തിന്റെ സാന്നിദ്ധ്യത്തിൽ ക്വാണ്ടം സ്ഥിതികളുടെ ഊർജ്ജത്തിൽ വ്യത്യാസം വരുന്നു. ഇപ്പോൾ വ്യത്യസ്ത ക്വാണ്ടം സ്ഥിതികൾ തമ്മിലുള്ള പരിവർത്തനം വ്യത്യസ്ത സ്പെക്ട്രൽ രേഖകൾക്കാണ് കാരണമാവുക. ഉദാഹരണമായി a->d, a->e എന്നീ പരിവർത്തനങ്ങളിൽ പുറത്തുവരുന്ന ഊർജ്ജം വ്യത്യസ്തമായതിനാൽ ഇവ സൃഷ്ടിക്കുന്ന സ്പെക്ട്രൽ രേഖകളും വ്യത്യസ്തമായിരിക്കും. എന്നാൽ എല്ലാ ക്വാണ്ടം സ്ഥിതിപരിവർത്തനങ്ങളും സാധ്യമാവുകയില്ല. ഈ ഉദാഹരണത്തിൽ 9 പരിവർത്തനങ്ങൾ ഗണിതപരമായി സാധ്യമാണെങ്കിലും ക്വാണ്ടം ബലതന്ത്രത്തിലെ സെലക്ഷൻ നിയമങ്ങൾ അനുസരിക്കുന്നവ മാത്രമേ യഥാർത്ഥത്തിൽ സാധ്യമാകൂ.
ഇലക്ട്രോണുകളൂടെ സ്പിന്നുകളുടെ തുക പൂജ്യമല്ലാതിരുന്നാൽ ഒരു ഊർജ്ജസ്ഥിതി ഒറ്റ എണ്ണം സീമാൻ ഉപലെവലുകളായി പിരിയാതെ ഇരട്ട എണ്ണം സീമാൻ ഉപലെവലുകളായി പിരിയുന്നു. ഇലക്ട്രോണുകളുടെ എണ്ണം ഒറ്റസംഖ്യയാകുമ്പോളാണ് ഇത് സംഭവിക്കുന്നത്. ഇലക്ട്രോണിന് സ്പിൻ എന്ന ഗുണമുണ്ടെന്ന് കണ്ടെത്തുന്നതിനുമുമ്പ് യാതൊരുവിധത്തിലും വിശദീകരിക്കാൻ സാധിക്കാതിരുന്ന ഈ പ്രതിഭാസം ക്രമവിരുദ്ധ സീമാൻ പ്രഭാവം (Anomalous Zeeman effect) എന്നറിയപ്പെടുന്നു. 1897-ൽ ഐറിഷ് ഭൗതികശാസ്ത്രജ്ഞനായ തോമസ് പ്രെസ്റ്റണാണ് ഇത് കണ്ടെത്തിയത്[4].
കാന്തികക്ഷേത്രത്തിന്റെ ശക്തി വളരെയധികമാകുമ്പോൾ ഇലക്ട്രോണിന്റെ ഭ്രമണം മൂലവും സ്പിൻ മൂലവുമുള്ള കോണീയ സംവേഗങ്ങൾ തമ്മിലുള്ള പിണ (coupling) നഷ്ടമാകുന്നു. സീമാൻ പ്രഭാവത്തിന്റെ ശക്തിയേറിയ കാന്തികക്ഷേത്രത്തിലെ സമാനപ്രഭാവമായ ഇത് പാഷൻ-ബാക്ക് പ്രഭാവം (Paschen-Back effect) എന്നറിയപ്പെടുന്നു. ജർമ്മൻ ഭൗതികശാസ്ത്രജ്ഞരായ ഫ്രീഡ്രിച്ച് പാഷൻ, ഏൺസ്റ്റ് ഇ.എ. ബാക്ക് എന്നിവർ ചേർന്നാണ് ഈ പ്രഭാവം കണ്ടെത്തിയത്.
സീമാൻ പ്രഭാവത്തിൽ ഇലക്ട്രോണുകളുടെ ഊർജ്ജത്തിൽ വരുന്ന മാറ്റം കാന്തികക്ഷേത്രത്തിന്റെ ശക്തിക്ക് ആനുപാതികമായാണ്. ഇതിനാൽ സ്പെക്ട്രൽ രേഖകളുടെ തരംഗദൈർഘ്യത്തിലെ വ്യത്യാസമുപയോഗിച്ച് കാന്തികക്ഷേത്രത്തിന്റെ ശക്തി കണ്ടെത്താം. സൂര്യന്റെയും നക്ഷത്രങ്ങളുടെയും കാന്തികക്ഷേത്രത്തെക്കുറിച്ച് പഠിക്കാൻ ജ്യോതിശാസ്ത്രത്തിൽ ഇത് ഉപയോഗിക്കുന്നു.
ജ്യോതിർഭൗതികത്തിൽ സീമാൻ പ്രഭാവം ആദ്യമായി ഉപയോഗിച്ചത് 1908-ൽ അമേരിക്കൻ സൗരശാസ്ത്രജ്ഞനായ ജോർജ്ജ് എല്ലെറി ഹെയ്ൽ ആയിരുന്നു. സൗരകളങ്കങ്ങളിൽ ഉയർന്ന കാന്തികക്ഷേത്രങ്ങൾ സൃഷ്ടിക്കപ്പെടുന്നുണ്ടെന്ന് സീമാൻ പ്രഭാവമുപയോഗിച്ച് അദ്ദേഹം കണ്ടെത്തി. 1947-ൽ ഹൊറേസ് ബാബ്കോക്കാണ് മറ്റ് നക്ഷത്രങ്ങളിലെ കാന്തികക്ഷേത്രങ്ങളെക്കുറിച്ച് പഠിക്കാൻ ആദ്യമായി ഈ പ്രഭാവമുപയോഗിച്ചത്. സോഹോ മുതലായ ഉപഗ്രഹങ്ങൾ സൂര്യനെക്കുറിച്ച് പഠിക്കാൻ ഇന്നും സീമാൻ പ്രഭാവം ഉപയോഗപ്പെടുത്തുന്നു.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.