Големиот хадронски судирач или ГХС (англ. Large Hadron Collider, LHC) — најголемиот и највисокоенергетскиот забрзувач на честички во светот, со цена на чинење од 9 милијарди американски долари[1]. Се очекува дека најосновните прашања во физиката, значително подобрувајќи ги нашите сознанија за најисконските законитости на природата.
Опити на ГХС (LHC) | |
---|---|
ATLAS | Тороиден ГХС-строј |
CMS | Компактен мионски соленоид |
LHCb | ГХС-убавина |
ALICE | Голем јонски судирач |
TOTEM | Целосен напречен пресек, еластично распрснување и раздвојување со прекршување |
LHCf | ГХС-напред |
MoEDAL | Еднополен и егзотичен детектор на ГХС |
Предзабрзувачи на ГХС | |
p и Pb | Линеарни забрзувачи за протони (Linac 2) и олово (Linac 3) |
(неозначен) | Протонски синхротронски засилувач |
PS | Протонски синхротрон |
SPS | Супер протонски синхротрон |
ГХС е сместен во тунел со обиколка од 27 км, 175 м под француско-швајцарската граница близу Женева. Овој синхротрон е направен да судира спротивни снопови од протони при енергија од 7 тераелектронволти (1,12 микроџули) по честичка, или јадра на олово при енергија од 574 TeV (92,0 µJ) по јадро.[2][3] Поимот „хадрон“ се однесува на честички составени од кваркови.
Големиот хадронски судирач е изграден од Европската организација за јадрено истражување (CERN) со намера да испробува разни предвидувања и претпоставки во високоенергетската физика, вклучувајќи го постоењето на Хигсовиот бозон[4] и големото семејство од нови честички кое го предвидува суперсиметријата.[5] Финансирањето и изработката е плод на соработка помеѓу 10.000 научници и инженери од над 100 земји и стотици универзитети и лаборатории.[6]
Работата на машината почнала на 10 септември 2008 со првите кружења на протонските снопови во главниот прстен на ГХС,[7] но по 9 дена работата е запрена заради тежок дефект.[8] Работата продолжила на 20 ноември 2009,[9] и првиот судар е забележан по 3 дена со вбризгувања со енергија од 450 GeV по сноп.[10] По земската пауза за 2009 г, ГХС проработел повторно. Овој пат со засилување од 3,5 TeV по сноп,[11] половина од предвидената енергија,[12] која се планира по зимската пауза за 2012 г. На 30 март 2010 се извршени првите планирани судири помеѓу снопови од по 3,5 TeV, со тоа поставувајќи Нов Светски рекорд за највисокоенергетски вештачки судир на честички.[13]
Цел
Физичарите се надеваат дека ГХС ќе им помогне да разрешат многу од основните прашања во физиката: основните закони на заемодејството на силите на елементарните честички, темелната структура на просторот и времето, особено односот помеѓу квантната механика и општата релативност, кајшто тековните теории и сознанија не даваат јасни решенија или сосема се уриваат. Овие проблеми, во најмала рака ги опфаќаат следниве прашања:[14]
- Дали во природата навистина се реализира Хигсовиот механизам кој им ја создава масата на елементарните честички преку електрослабо нарушување на симетријата?[15] Се очекува дека судирачот ќе го или отпише постоењето на Хугсовите бозони, со тоа заокружувајќи (или побивајќи) го Стандардниот модел.[16][17][18]
- Дали суперсиметријата е проширување на Стандардниот модел, или Поенкареовата симетрија се реализира во природата, што би значело дека сите познати честички имаат суперсиметрични партнери?[19][20][21]
- Дали постојат уште димензии,[22] како што се предвидува според разните модели под влијание на теоријата на струните, и можеме ли да ги откриеме?[23]
- Какви се особеностите на темната материја која сочинува 23% од масата на вселената?
Other questions are:
- Дали електромагнетизмот, силно јадрено заемодејство и слабото јадрено заемодејство се просто различни манифестации на една обединеа сила, како што се предвидува според некои теории на големо обединување?
- Зошто гравитацијата е толку многукратко послаба (многу величински редови) од другите основни сили?
- Дали постојат дополнителни извори на кваркови ароми покрај веќе предвидените според Стандардниот модел?
- Зошто забележуваме нарушување на симетријата помеѓу материјата и антиматеријата?.
- Каква по својства била кварко-глуонската плазма во зачетоците на вселената?
Конструкција
ГХС е најголемиот забрзувач на честички на светот.[2][24] Судирачот е сместен во прстенест тунел со обиколка од 27 км, на длабочина од 50-175 м под земја.
Тунелот е обложен со бетон и е широк 3,8 м. Изграден е во периодот од 1983 до 1988 г. и порано служел како лежиште за Големиот електронско-позитронски судирач.[25] ГХС ја преминува границата Швајцарија-Франција на четири места, и најголемиот дел од него е во Франција. Надземните објекти се наменети за помошна опрема како компресори, вентилациска техника, контролна електроника и погони за разладување.
Во тунелот се сместени две паралелни цевки кои се врсктуваат на четири места. Низ секоја оди протонски сноп кој патува низ прстенот во спротивна насока. Сноповите ги водат 1.232 двополни магнети, а точниот правец се држи со 392 четириполни магнети, со цел да се даде што поголема можност за судир на честичките во четирите точки кајшто се вркстуваат сноповите. Вградени се вкупно 1.600 суперпроводни магнети, и највеќето од нив тежат по 27 тона. За одржување на работната температура на магнетите (1.9 K (−271.25 °C)) се потребни 96 тона течен хелиум. Со тоа ГХС е воедно и најголемиот криоген строј во светот.
Еднаш до двапати дневно, протоните се забрзуваат од 450 GeV на 7 TeV, и со тоа полето на двополните магнети се зголемува од 0,54 на 8,3 тесли (T)}}. Секој протон содржи енергија од 7 TeV, и така вкупната судирна енергија достигнува 14 TeV. При ваква енергија, протоните имаат Лоренцов фактор од приближно 7.500 и се движат при 0.999999991 c, или околу 3 м/сек побавно од брзината на светлината (c).[26] На еден протон му треба помалку од 90 микросекунди (μs) за да направи круг околу главниот (големиот) прстен – што значи дека протоните прават 11.000 кружења во секунда. Наместо да се пуштаат во последователни снопови, протоните се групираат во 2.808 грста, така што заемодејствата помеѓу нив можат да се одвиваат во временско растојание не пократко од 25 наносекунди.
Пред да се уфрлат во главниот забрзувач, честичките се подготвуваат со низа строеви што последователно ја зголемуваат нивната енергија. Првиот строј е линеарниот забрзувач на честички LINAC 2, кој создава протони од 50-MeV, и истите потоа одат во протонски синхротронски засилувач (PSB). Тука протоните се забрзуваат до 1,4 GeV и се вметнуваат во протонски синхротрон (PS), каде понатаму се забрзуваат до 26 GeV. На крај, како последна фаза се користи супер протонски синхротрон (SPS), кој ја зголемува енергијата на 450 GeV. Потоа честичките се вбризгуваат во главниот прстен. Тука грстовите протони се собираат и забрзуваат (во тек на 20 минути) до максималните 7-TeV, па се кружат 10-24 часа, и се судираат во четирите места на вкрстување.[27]
Програмот на ГХС се задржува главно на протонско–протонски судири. Меѓутоа едне месец годишно се вршат и тешкојонски судири. Се разгледуваат и полесните јони, но нагласокот е на оловните јони[28]. Оловните јони најпрвин се забрзуваат во линеарниот забрзувач LINAC 3, а за складирање и разладување на јоните се користи нискоенергетски јонски прстен (LEIR). Потоа јоните се забрзуваат повеќе со PS и SPS, па на крај се вметнуваат во главниот прстен на ГХС, каде достигнуваат енергија од of 2,76 TeV по нуклеон (или 575 TeV по јон), повисоко од енергијата што ја постигнува Релативистичкиот судирач на тешки јони. Целта на тешкојонската програма е да ја истражи кварко–глуонската плазма која постоела кога вселената била во зародиш.
Детектори
За ГХС се изработени 6 детектори, сместени во големи подземни шуплини ископани кај вкрстувањата на ГХС. Два од нив, ATLAS и Компактниот мионски соленоид (CMS) се големи општонаменски детектори за честички.[24] Детекторите ALICE и LHCb имаат поконкретни намени, многу помали и предвидени за поспецијализирани истражувања. The BBC's summary of the main detectors is:[29]
Детектор | Опис |
---|---|
ATLAS | еден од два општонаменски детектори. ATLAS открива знаци на нови нешта во физиката, како потеклото на масата и повеќедимензионалноста. |
CMS | ова е другиот општонаменски детектор кој, како ATLAS, го бара Хигсовиот бозон и бара показатели за својствата на темната материја. |
ALICE | проучува „течен“ облик на материја наречен кварко–глуонска плазма која постоела кратко време по Големата експлозија. |
LHCb | Големата експлозија создала подеднаква количина материја и антиматерија. LHCb се обидува да открие што се случило со антиматеријата која навидум е отсутна. |
Предложена надградба
По извесен број години, секој истражен проект во физиката на основните честички почнува да ја намалува својата делотворност: секоја следна година открива помалку појави од претходната. За оваа цел опитот треба да се поднови и надгради, по енергија или по сјајност (луминозитет). Оваа надградба на ГХС Супер ГХС, предложен[30] да се изработи по 10 години работа на ГХС.
Оптимал за подновата за сјајност н ГХС зголемување на проточноста во сноповите (бројот на прптпни во снопот) и преправка на две високолуминозни места на заемодејство - ATLAS и CMS. За да се постигне ова треба, сноповите треба да се развијат до енергија од 1 TeV пред да се вметнат во (Супер) ГХС. За оваа цел треба да се прилагодат сите строеви за предзабрзување. Најскапи би биле промените што треба да се извршат во Суперпротонскиот синхротрон.
Поврзано
- Хигсов бозон
- Меѓународен линеарен судирач
- Список на забрзувачи на честички
Наводи
Надворешни врски
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.