From Wikipedia, the free encyclopedia
Двоичен броен систем (бинарен броен систем) — броен систем што изразува бројчени вредности користејќи два симболи: 0 и 1, обично по пат на положбен запис (нотација) со основа 2. Овој систем е од суштинско значење кај сите современи сметачи, заради неговата примена во секое дигитално струјно коло со логички порти.
Бројни системи кај разни народи и култури | |
---|---|
Индоарапски броеви | |
Западноарапски • Источноарапски | |
Бенгалски • Гуџаратски • Гурмухски • Деваганарски (Индиски) • Синхалски • Тамилски | |
Балиски • Бурмански • Ѕонгкански (Бутански) • Јавански • Кмерски • Лаоски • Монголски • Тајландски | |
Источноазиски броеви | |
Виетнамски Јапонски Кинески (Суџојски) |
Корејски Стапчиња Хокиенски |
Азбучни броеви | |
Абџадски Арјабатини Гиски (Етиопски) Грузиски Грчки |
Ерменски Кирилични Римски Хебрејски |
Други системи | |
Атички Брамански Вавилонски Глаголични Егејски Египетски Етрурски Инуитски |
Кипу Кхаростенски Мајански Муискански Поле со урни Праисториски Чувашки |
Положбени системи по основа | |
Десетични (10) | |
1, 2, 3, 4, 5, 6, 8, 12, 16, 20, 30, 36, 60 повеќе… | |
Историски, за творец на двоичниот броен систем се смета индискиот математичар Пингала, кој разработил математички начин на претставување на прозодијата. Оттогаш, се вршени различни проучувања и подобрувања на истиот, а во 1679 година, Готфрид Лајбниц дошол до неговиот современ облик, објавувајќи го во написот „Објаснение за двоичната аритметика“ (Explication de l'Arithmétique Binaire). Во него, тој за првпат ги употребил цифрите 0 и 1, исто како во современиот систем.
Еден двоичен број може да се претстави со која било низа на битови (двоични бројки), кои пак можат да се претстават со кој било механизам што може да биде во заемно исклучиви состојби. Бројчената вредност зависи од вредноста што ја претставуваат симболите. Кај еден сметач бројчените вредности може да се претстават со два различни напона; кај магнетниот складиштен диск може да се користат магнетните поларитети. Вредностите „позитивно“, „да“ или „вклучено“ не мора да соодветствуваат на бројната вредност еден. Тоа зависи од осмислената архитектура.
Индискиот мислител Пингала (V-II век п.н.е.) разработил математички начин на претставување на прозодијата, и така го осмислил првиот двоичен броен систем.[1][2] Пингала користел двоични броеви во облик на кратки и долги согласки (со должина колку две кратки), и со тоа разработил систем сличен на Морзеовата азбука.[3][4]
Во древна Кина се знаело за збир од осум триграми („ба гуа“) и збир од 64 хексаграми преку класичното дело „И чинг“ („Книга на промените“), што е аналогно на трибитни и шестбитни двоични бројки. Во XI век, мислителот Шао Јунг разработил метод на подредување на хексаграмите што соодветствува на низата од 0 до 63 во двоичниот систем, каде јин претставувал 0, а јанг претставувал 1, со најмал значенски бит врз нив. Меѓутоа нема докази дека Шао имал сознанија за двоичните пресметки. Редоследот е исто така лексикографски редослед од шесткратни варијанти на елементи одбрани од двоелементно множество.[5]
Слични двоични претстави се користеле и во Африка, во системите за претскажување како „ифа“, како и кај западната средновековна геомантија. Системот на претскажување со основа 2 наоѓал широка примена во Потсахарска Африка со векови.
Во 1605 година, англискиот мислител Френсис Бејкон објавил труд во кој објаснува дека буквите од азбуката можат да се сведат на низи од двоични цифри, кои потоа може да се шифрираат како едвај видливи варијации пред некој неповрзан текст.[6] Од големо значење за општата теорија на двоично шифрирање е неговата идеја дека овој метод може да се примени користејќи какви било предмети: „под услов овие предмети да се разликуваат само двозначно; како со ѕвона, со труби, со светла и факли, со истрели од пушки и други предмети од таков карактер“.[6]
Во 1679 година, Готфрид Лајбниц го проучувал двоичниот систем, доаѓајќи до неговиот современ облик во написот „Објаснение за двоичната аритметика“ (Explication de l'Arithmétique Binaire) (1703)[7]. Во неговиот систем, Лајбниц користи 0 и 1, исто како во современиот систем. Лајбниц бил синофил и бил фасциниран од „И чинг“ каде хексаграмите соодветствуваат на двоичните броеви од 0 до 111111, и заклучил дека ова е доказ за големите достигнувања на Кинезите во полето на филозофската математика.[8]
Во 1854, британскиот математичар Џорџ Бул го објавил неговиот епохален труд во кој образложува алгебарски систем во логиката, подоцна наречен „Булова алгебра“. Неговата логичка анализа одиграла суштинска улога во осмислувањето на дигиталните кола.[9]
Во 1937 г, Клод Шенон го објавил својот магистерски труд на Масачусетскиот технолошки институт (МТИ) каде за првпат во историјата се објаснува примената на Буловата алгебра и двоичната аритметика кај електронските релеи и прекинувачи. Со овој труд, насловен како „Симболична анализа на кола со релеи и прекинувачи“ (A Symbolic Analysis of Relay and Switching Circuits), Шенон ги поставил основите на практичната конструкција на дигитални кола.[10]
Во ноември 1937 г, Џорџ Штибиц како вработен во Беловите лаборатории (Bell Labs), изработил сметач со релеи кој го нарекол „Модел К“ („кујна“, собата кајшто го склопувал), кој вршел пресметки по пат на двоично собирање.[11] Во 1938 година, Беловите лаборатории започнале полна истражна програма предводена од Штибиц. На 8 јануари 1940 година го изработиле сметачот Complex Number Computer („Сметач на комплексни броеви“) кој можел да пресметува комплексни броеви. На научниот собир на Американското математичко друштво во колеџот Дартмур, на 11 септември 1940 година Штибиц демонстрирал далечинско давање на наредби на сметачот со телепринтер поврзан преку телефонска линија. Ова е првата сметачка машина што можела да се управува од далечина преку телефонска линија. Присутни на собирот биле Џон фон Нојман, Џон Мокли и Норберт Винер, кои го овековечиле овој настан во своите мемоари.[12][13][14]
Еден двоичен број може да се претстави со која било низа на битови (двоични бројки), кои пак можат да се претстават со кој било механизам што може да биде во заемно исклучиви состојби. Еве различни низи од симболи што можат да се протолкуваат како двоична бројчена вредност на бројот 667:
1 0 1 0 0 1 1 0 1 1 | − | − − | | − | | x o x o o x x o x x д н д н н д д н д д
Бројчената вредност во сите четири случаја зависи од вредноста што ја претставуваат симболите. Кај еден сметач бројчените вредности може да се претстават со два различни напона; кај магнетниот складиштен диск може да се користат магнетните поларитети. Вредностите „позитивно“, „да“ или „вклучено“ не мора да соодветствуваат на бројната вредност еден. Тоа зависи од осмислената архитектура.
Поради распространетата употреба на арапските бројки, двоичните броеви по обичај се пишуваат со симболите 0 и 1. При нивно запишување, двоичните бројки честопати имаат долен индекс, претставка или наставка, со цел да се укаже на нивната основа. Следниве записи имаат истоветно значење:
Во усното општење, двоичните бројки се читаат цифра по цифра, за да се разликуваат од десетичните броеви. На пример, двоичниот број 100 се изговара „еден нула нула“, а не „сто“. Двоичната бројка 100 е еднаква на десетичната вредност четири, и затоа не би било исправно бројката да се нарече „сто“.
Десетично | Двоично |
---|---|
0 | 0 |
1 | 1 |
2 | 10 |
3 | 11 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
8 | 1000 |
9 | 1001 |
10 | 1010 |
11 | 1011 |
12 | 1100 |
13 | 1101 |
14 | 1110 |
15 | 1111 |
16 | 10000 |
Броењето во двоичниот систем е слично на она во другите бројни системи. Почнувајќи од една цифра, го набројуваме секој симбол, во растечки редослед. Десетичното пребројување се врши со симболите од 0 до 9, додека двоичниот ги користи само симболите 0 и 1.
Кога ќе се потрошат симболите за првата цифра, следната најголема цифра (лево) се накачува, и броиме пак од 0. Во десетичниот систем броењето оди вака:
Откако цифра ќе достигне 9, со накачување се враќа на 0 но исто така предизвикува накачување на следната бројка лево од неа. Броењето во двоичниот систем е исто, освен тоа што се користат само симболите 0 и 1. Така, откако цифрата ќе достигне 1, со накачување се враќа 0, но исто така предизвикува накачување на следната бројка лево од неа:
Бидејќи двоичниот систем е систем на основа 2, секоја цифра претставува растечки степен на 2 - најдесната цифра претставува 20, следната претставува 21, па 22, итн. За да ја утврдиме десетичната претстава на еден двоичен број, едноставно го земаме збирот од производите на двоичните цифри и степените на 2 што ги претставуваат. На пример двоичниот број:
100101
можеме да го претвориме во десетичен облик со:
[(1) × 25] + [(0) × 24] + [(0) × 23] + [(1) × 22] + [(0) × 21] + [(1) × 20] =
[1 × 32] + [0 × 16] + [0 × 8] + [1 × 4] + [0 × 2] + [1 × 1] = 37
За да создадеме поголеми броеви, едноставно додаваме уште цифри на левата страна од двоичната претстава.
Двоичните дропки имаат крај само ако именителот има 2 како единствен примфактор. Така, 1/10 нема конечен двоичен израз, и поради тоа 10 × 0,1 не е еднакво на точно 1 во аритметиката со променливи децимали. На пример, ако сакаме да го протолкуваме двоичниот израз 1/3 = ,010101..., ова значи: 1/3 = 0 × 2−1 + 1 × 2−2 + 0 × 2−3 + 1 × 2−4 + ... = 0,3125 + ... Не може да се најде точната вредност со збир од конечен број на обратни основи два, а нулите и единиците се редат наизменично до бесконечност.
Дропка | Десетична | Двоично | Дробна апрокс. |
---|---|---|---|
1/1 | 1 или 0,999... | 1 или 0,111... | 1/1 или 1/2+1/4+1/8... |
1/2 | 0,5 или 0,4999... | 0,1 или 0,0111... | 1/2 или 1/4+1/8+1/16... |
1/3 | 0,333... | 0,010101... | 1/4+1/16+1/64... |
1/4 | 0,25 или 0,24999... | 0,01 или 0,00111... | 1/4 или 1/8+1/16+1/32... |
1/5 | 0,2 или 0,1999... | 0,00110011... | 1/8+1/16+1/128... |
1/6 | 0,1666... | 0,0010101... | 1/8+1/32+1/128... |
1/7 | 0,142857142857... | 0,001001... | 1/8+1/64+1/512... |
1/8 | 0,125 или 0,124999... | 0,001 или 0,000111... | 1/8 или 1/16+1/32+1/64... |
1/9 | 0,111... | 0,000111000111... | 1/16+1/32+1/64... |
1/10 | 0,1 или 0,0999... | 0,000110011... | 1/16+1/32+1/256... |
1/11 | 0,090909... | 0,00010111010001011101... | 1/16+1/64+1/128... |
1/12 | 0,08333... | 0,00010101... | 1/16+1/64+1/256... |
1/13 | 0,076923076923... | 0,000100111011000100111011... | 1/16+1/128+1/256... |
1/14 | 0,0714285714285... | 0,0001001001... | 1/16+1/128+1/1024... |
1/15 | 0,0666... | 0,00010001... | 1/16+1/256... |
1/16 | 0,0625 или 0,0624999... | 0,0001 или 0,0000111... | 1/16 или 1/32+1/64+1/128... |
Двоичната аритметика е иста како аритметиката на останатите бројни системи. Со двоичните бројки може да се врши собирање, одземање, множење и делење.
Најпростата двоична аритметичка операција е собирањето. Собирањето на два едноцифрени двоични броја е релативно просто, користејќи облик на пренос:
Со собирање на две цифри „1“ ја добиваме цифрата „0“, а 1 треба да се собере во следната колона. Ова е слично на постапката кај десетичниот систем кога се собираат дадени едноцифрени броеви. Ако резултатот е еднаков или поголем од вредноста на основата (10), цифрата лево се накачува:
Ова се нарекува „пренос“. Кога збирот ја надминува вредноста на една цифра, тогаш го „пренесуваме“ лево вишокот износ поделен со основата (т.е. 10/10), собирајќи го со следната положбена вредност. Ова е исправно бидејќи следната положба има тежина што е повисока за фактор еднаков на основата. Преносот кај двоичните операции се врши на истиот начин:
1 1 1 1 1 (пренесени бројки) 0 1 1 0 1 + 1 0 1 1 1 ------------- = 1 0 0 1 0 0
Во овој пример собираме две бројки: 011012 (1310) и 101112 (2310). Во најгорниот ред стојат употребените преносни битови. Почнувајќи од најдесната колона, 1 + 1 = 102. 1 се пренесува лево, а најдолу во најдесната колона се пишува 0. Повторно се собира втората колона од десно: 1 + 0 + 1 = 102; 1 се пренесува, а најдолу се пишува 0. Третата колона: 1 + 1 + 1 = 112. Овојпат, се пренесува 1, и во најдолниот ред се пишува 1. По оваа постапка го добиваме конечниот резултат 1001002 (36 десетично).
Кога сметачот треба да собере два броја, правилото: x ексили y = (x + y) мод 2 за кои било два бита x и y исто така овозможува многу брза пресметка.
Многу проблеми при двоичното собирање се упростуваат со методот на долг пренос наречен и „Брукхаусов метод на двоично собирање“. Овој метод е корисен кај секое двоично собирање каде еден од броевите има долга низа од цифри „1“. Следниве големи двоични броеви се собираат во два едноставни чекора без повеќекратни преноси од едно место на следното.
1 1 1 1 1 1 1 1 (пренесени бројки) (метод на долг пренос) 1 1 1 0 1 1 1 1 1 01 1 101 1 1 1 10 + 1 0 1 0 1 1 0 0 1 1 Наспроти: + 1 010 1 1 0 011 најпрвин ги собираме прецртаните бројки ----------------------- + 1 0 0 0 1 0 0 0 0 0 0 = збир на прецртаните бројки = 1 1 0 0 1 1 1 0 0 0 1 ----------------------- потоа ги собираме преостанатите бројки 1 1 0 0 1 1 1 0 0 0 1
Во овој пример додаваме две бројки: 1 1 1 0 1 1 1 1 1 02 (95810) и 1 0 1 0 1 1 0 0 1 12 (69110). Во најгорниот ред стојат употребените преносни битови. Наместо стандардниот пренос од една колона во следната, може да се собере единицата („1“) со најмала положбена вредност со „1“ во соодветната положбена вредност под неа, а „1“ може да се пренесе една цифра по крајот на низата. Овие броеви мора да се прецртаат бидејќи се веќе собрани. Потоа едноставно го собираме резултатот со непрецртаните цифри во вториот ред. По оваа постапка го добиваме конечниот резултат 1 1 0 0 1 1 1 0 0 0 12 (164910).
0 | 1 | |
---|---|---|
0 | 0 | 1 |
1 | 1 | 10 |
Двоичната таблица на собирање е слична, но не иста како таблицата на вистинитост на дисјунктивната операција . Разликата се состои во тоа што , додека пак .
Одземањето работи на истиот начин:
Ако ја одземеме цифрата „1“ од цифрата „0“ добиваме „1“, а пак 1 ќе треба да се одземе од следната колона. Ова се нарекува „позајмување“ и работи исто како преносот. Ако резултатот од одземањето е помал од 0 (најмалата можна вредност на една цифра), тогаш го „позајмуваме“ недостатокот поделен со основата (т.е. 10/10) од лево, одземајќи го од следната положбена вредност.
* * * * (позајмуваме од колоните со ѕвездички) 1 1 0 1 1 1 0 − 1 0 1 1 1 ---------------- = 1 0 1 0 1 1 1
Одземањето на позитивен број е истоветно на „собирање“ на негативен број со еднаква апсолутна вредност. Сметачите користат запис со дополнување на двојка за да претстават негативни вредности. Со овој запис се избегнува потребата од посебно „одземање“. Користејќи запис со дополнување на двојка одземањето може накратко да се претстави во следнава формула:
А − Б = А + не Б + 1
Двоичното множење е слично на неговиот десетичен пандан. Два броја А и Б можат да се помножат со делумни производи: за секоја цифра во Б, производот на таа цифра во А се пресметува и се пишува во нов ред, се пренесува лево така што неговата најдесна цифра се порамнува со цифрата што се користела во Б. Збирот од сите овие делумни производи го дава конечниот резултат.
Бидејќи во двоичниот систем постојат само две цифри, постојат само два можни исхода од делумното множење:
На пример, двоичните броеви 1011 и 1010 се множат вака:
1 0 1 1 (А) × 1 0 1 0 (Б) --------- 0 0 0 0 ← Соодветствува на нула во Б + 1 0 1 1 ← Соодветствува на единица во Б + 0 0 0 0 + 1 0 1 1 --------------- = 1 1 0 1 1 1 0
Двоичните броеви можат и да се помножат со битови по двоична запирка:
1 0 1,1 0 1 (А) (5,625 десетично) × 1 1 0,0 1 (Б) (6,25 десетично) ------------- 1,0 1 1 0 1 ← Соодветствува на единица во Б + 0 0,0 0 0 0 ← Соодветствува на нула во Б + 0 0 0,0 0 0 + 1 0 1 1,0 1 + 1 0 1 1 0,1 ----------------------- = 1 0 0 0 1 1,0 0 1 0 1 (35,15625 десетично)
0 | 1 | |
---|---|---|
0 | 0 | 0 |
1 | 0 | 1 |
Двоичната таблица множење е иста со вистинитосната таблица на операцијата со логичкиот сврзник .
Двоичното делење е исто така слично на неговиот десетичен пандан:
Овде, делителот е 1012 или 5 десетично, додека деленикот е 110112, or 27 десетично. Постапката е иста како кај десетичното разложено делење; тука делителот 1012 оди во првите три цифри 1102 на деленикот еднаш, и така „1“ се пишува во најгорниот ред. Овој резултат се множи со делителот, и се одзема од првите три цифри на деленикот. Се вклучува следната цифра („1“) за да се добие нова трицифрена низа:
1 ___________ 1 0 1 ) 1 1 0 1 1 − 1 0 1 ----- 0 1 1
Потоа постапката се повторува со новата низа, така продолжувајќи додека не се потрошат цифрите во деленикот:
1 0 1 ___________ 1 0 1 ) 1 1 0 1 1 − 1 0 1 ----- 0 1 1 − 0 0 0 ----- 1 1 1 − 1 0 1 ----- 1 0
Вака, деленикот на 110112 поделен со 1012 е 1012, како што (во најгорниот ред), додека остатокот (во најдолниот ред) е 102. Во десетичниот систем, 27 поделено со 5 е 5 со остаток 2.
Иако не се во непосредно сродство со бројченото толкување на двоичните симболи, битовите низи може да се манипулираат користејќи ги Буловите логички оператори. Ваквата манипулација со низа двоични симболи се нарекува битова операција. Логичките оператори И, ИЛИ и ЕКСИЛИ може да се применат врз соодветните битови во две двоични бројки наведени како извод. Логичката операција НЕ може да се примени врз поединични битови во една двоична бројка наведена како извод. Понекогаш ваквите операции се користат како аритметички кратенки, а може да понудат и други пресметковни предности. На пример, ако извршиме аритметичко поместување лево на еден двоичен број е исто како да сме го помножиле со (позитивна, интегрална) основа 2.
За да претвориме цела бројка на основа 10 во двоична бројка на основа 2, го делиме бројот со два, а остатокот е најмалиот значенски бит. Резултатот (цел број) повторно се дели со два, а остатокот е следниот најголем значенски бит. Оваа постапка ја повторуваме сè додека не добиеме резултат нула.
Претворањето од основа 2 на основа 10 се врши со обратна примена на горенаведениот логаритам. Битовите во двоичниот број се користат еден по еден, започнувајќи од најголемиот значенски (најлев) бит. Почнувајќи од вредноста 0, ја удвојуваме претходната вредност и го додаваме следниот бит за да ја добиеме следната вредност, повторувајќи ја постапката. Ова може да се организира во табела со повеќе колони. На пример, ако сакаме да го претвориме 100101011012 во десетичен систем:
Претходна вредност | × 2 + | Следен бит | Следна вредност |
---|---|---|---|
0 | × 2 + | 1 | = 1 |
1 | × 2 + | 0 | = 2 |
2 | × 2 + | 0 | = 4 |
4 | × 2 + | 1 | = 9 |
9 | × 2 + | 0 | = 18 |
18 | × 2 + | 1 | = 37 |
37 | × 2 + | 0 | = 74 |
74 | × 2 + | 1 | = 149 |
149 | × 2 + | 1 | = 299 |
299 | × 2 + | 0 | = 598 |
598 | × 2 + | 1 | = 1197 |
Резултатот е 119710. Првата претходна вредност на 0 е едноставно првична десетична вредност. Овој метод е примена на т.н. Хорнерова шема.
Двоично | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Десетично | 1×210 + | 0×29 + | 0×28 + | 1×27 + | 0×26 + | 1×25 + | 0×24 + | 1×23 + | 1×22 + | 0×21 + | 1×20 = | 1197 |
Дробните делови на еден број се претвораат на сличен начин. И тие се засноваат на еквивалентноста на префрлањето со удвојувањето или располовувањето.
Како имаме дробен двоичен број како ,110101101012, првата цифра е , втората е , итн. Така, ако имаме 1 на првото место по децималната запирка, тогаш бројот е барем и обратно. Двапати тој број изнесува барем 1. Ова укажува на алгоритамот: бројот што треба да се претвори постојано го удвојуваме, и кога резултатот е барем 1, го исфрламе целобројниот дел.
На пример, 10 двоично претставен е:
Претворање | Резултат |
---|---|
0, | |
0,0 | |
0,01 | |
0,010 | |
0,0101 |
Одовде, повторливата десетичната дропка 0,3... е истоветна со повторливата двоична дропка 0,01... .
На пример, 0,110, двоично ќе биде:
Претворање | Резултат |
---|---|
0,1 | 0, |
0,1 × 2 = 0,2 < 1 | 0,0 |
0,2 × 2 = 0,4 < 1 | 0,00 |
0,4 × 2 = 0,8 < 1 | 0,000 |
0,8 × 2 = 1,6 ≥ 1 | 0,0001 |
0,6 × 2 = 1,2 ≥ 1 | 0,00011 |
0,2 × 2 = 0,4 < 1 | 0,000110 |
0,4 × 2 = 0,8 < 1 | 0,0001100 |
0,8 × 2 = 1,6 ≥ 1 | 0,00011001 |
0,6 × 2 = 1,2 ≥ 1 | 0,000110011 |
0,2 × 2 = 0,4 < 1 | 0,0001100110 |
Ова е и повторлива двоична дропка 0,00011... . Може да нè изненади тоа што конечните десетични дропки може да имаат повторливи разложувања во двоичниот систем. Од оваа причина, многумина се изненадуваат кога ќе увидат дека 0,1 + ... + 0,1 (10 собирања) се разликува од 1 во аритметиката со променливи децимали. Впрочем, единствените двоични дропки со разложувања што имаат завршеток се оние со облик на цел број поделен со основа 2, а 1/10 не е таква дропка.
Конечното претворање е од двоични во десетични дропки. Тешкотии се јавуваат само при работа со повторливи дропки, а инаку методот е да ја префрлиме дропката во цел број, да го извршиме горенаведеното претворање, а потоа да го поделиме со соодветниот степен на 2 во десетичната основа. На пример:
= | 1100 | ,101110... | |
= | 1100101110 | ,01110... | |
= | 11001 | ,01110... | |
= | 1100010101 | ||
= | (789/62)10 |
Друг начин на претворање од двоичен во десетичен систем, воедно побрз ако сме запознаени со шеснаесетеречниот систем, е непосредното претворање—прво да го претвориме ( двоично) во ( шеснаесетеречно), а потоа да го претвориме ( шеснаесетеречно) во ( десетично).
Овие прости методи не се погодни за работа со многу големи броеви бидејќи со нив вршиме голем број на множења или делења каде еден операнд е исклучително голем. Позгоден начин е да употребиме алгоритам раздвојувајќи го бројот: ако имаме двоичен број, го делиме на 10k, каде k го одбираме така што количникот е приближно еднаков на остатокот, а потоа секој дел го претвораме во десетичен систем и двата дела ги конкатенираме. Ако имаме десетичен број, можеме да го разделиме на два дела со приближно еднаква големина, па секој од нив го претвораме во двоичен систем, каде првиот претворен дел го множиме со 10k и го собираме со вториот претворен дел, каде k е бројот на десетични бројки во вториот, најмал значенски дел пред претворањето.
0hex | = | 0dec | = | 0oct | 0 | 0 | 0 | 0 | |
1hex | = | 1dec | = | 1oct | 0 | 0 | 0 | 1 | |
2hex | = | 2dec | = | 2oct | 0 | 0 | 1 | 0 | |
3hex | = | 3dec | = | 3oct | 0 | 0 | 1 | 1 | |
4hex | = | 4dec | = | 4oct | 0 | 1 | 0 | 0 | |
5hex | = | 5dec | = | 5oct | 0 | 1 | 0 | 1 | |
6hex | = | 6dec | = | 6oct | 0 | 1 | 1 | 0 | |
7hex | = | 7dec | = | 7oct | 0 | 1 | 1 | 1 | |
8hex | = | 8dec | = | 10oct | 1 | 0 | 0 | 0 | |
9hex | = | 9dec | = | 11oct | 1 | 0 | 0 | 1 | |
Ahex | = | 10dec | = | 12oct | 1 | 0 | 1 | 0 | |
Bhex | = | 11dec | = | 13oct | 1 | 0 | 1 | 1 | |
Chex | = | 12dec | = | 14oct | 1 | 1 | 0 | 0 | |
Dhex | = | 13dec | = | 15oct | 1 | 1 | 0 | 1 | |
Ehex | = | 14dec | = | 16oct | 1 | 1 | 1 | 0 | |
Fhex | = | 15dec | = | 17oct | 1 | 1 | 1 | 1 |
Двоичниот систем се претвора во и од шеснаесетеречен (хексадецимален) систем донекаде полесно. Причината е што основата на шеснаесетеречниот систем (16) е степен на основата на двоичниот систем (2). Поконкретно, 16 = 24, па затоа ни треба четири двоични цифри за претставување на една цифра од шеснаесетеречниот систем, како што може да се види на таблицата десно.
Ако сакаме да претвориме еден шеснаесетеречен број во неговиот двоичен еквивалент, едноставно ги заменуваме соодветните двоични цифри:
За да претвориме еден двоичен број во неговиот шеснаесетеречен еквивалент, го делиме во грпи од по четири бита. Ако бројот на битови не е содржател на четири, едноставно вметнуваме уште битови 0 лево (наречени постава). На пример:
За да претвориме еден шеснаесетеречен број во неговиот десетичен еквивалент треба да го помножиме десетичиоот еквивалент на секоја шеснаесетеречна цифра со соодветниот степен на основа 16 и да ги собереме добиените вредности:
Двоичните износи лесно се претвораат и во октални, бидејќи окталниот користи основа 8, што е степен на основа два (имено, 23, па така ни требаат точно три двоични цифри за да претставиме некоја октална бројка). Соодветството помеѓу двоичните и окталните бројки е исто како за првите осум цифри од шеснаесетеречен систем во таблицата погоре. Двоичното 000 е исто што и окталното 0, двоичното 111 е исто што и окталното 7, итн.
Октално | Двоично |
---|---|
0 | 000 |
1 | 001 |
2 | 010 |
3 | 011 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
Претворањето од октален во двоичен систем се врши исто како за шеснаесетеречниот:
Од двоичен во октален систем:
Од октален во десетичен систем:
Нецелите броеви можат да се претстават по пат на негативни основи, кои се одделуваат од останатите бројки со основна запирка (наречена децимална запирка во десетичниот систем). На пример, двоичниот број 11,012 ќе биде:
1 × 21 | (1 × 2 = 2) | плус |
1 × 20 | (1 × 1 = 1) | плус |
0 × 2−1 | (0 × ½ = 0) | плус |
1 × 2−2 | (1 × ¼ = 0,25) |
За збир од 3,25 десетично.
Сите дијадни рационални броеви имаат завршна двоична бројка — двоичната претстава има конечен број на членови по основната запирка. Другите рационални броеви имаат двоична претстава, но не завршуваат, туку се повторуваат со конечна последователна низа од бројки што се повторуваат до бесконечност. На пример
Појавата каде двоичната претстава на секој рационален број или завршува или се повторува се јавува и во другите бројни системи што работат со основа. Друга сличност е постоењето на алтернативни претстави за секоја конечна претстава, поради на фактот што 0,111111... е збир на геометриската низа 2−1 + 2−2 + 2−3 + ... што изнесува 1.
Двоичните бројки што ниту завршуваат, ниту се повторуваат претставуваат ирационални броеви. На пример,
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.