Loading AI tools
기본 단위를 찾을 수 없는 테셀레이션 위키백과, 무료 백과사전
비주기적 테셀레이션(非周期的-, 영어: aperiodic tessellation) 또는 비주기적 타일링(영어: aperiodic tiling)은 임의의 반복되는 기본 단위를 찾을 수 없는 테셀레이션이다. 이때 기본 단위(primitive unit)란 평행 이동만을 사용하여 평면을 채울 수 있는 최소 타일들의 구성을 말한다. 만약 어떤 타일들이 모여서 비주기적 타일밖에 만들어지지 않으면, 그 타일들의 집합(프로토타일)이 비주기적이라고 한다. 비주기적 테셀레이션의 예시로 가장 잘 알려진 것은 펜로즈 테셀레이션이다.[1][2]
비주기적 테셀레이션은 준결정의 수학적 모형 역할을 한다. 준결정은 1982년 단 셰흐트만이 발견되었고,[3] 2011년 그가 준결정 연구로 노벨상을 탔다.[4] 하지만 이 물질의 자세한 국소적인 구조는 아직 잘 설명할 수 없다.
비주기적 테셀레이션을 만드는 몇 가지 방법이 알려져 있다.
단위 정사각형 격자의 주기적 테셀레이션을 생각하자. (격자 종이처럼 보인다) 이제 한 정사각형을 두 개의 직사각형으로 나눈다. 이렇게 얻은 테셀레이션은 비주기적인데, 평행이동을 시켜서 이 테셀레이션과 같도록 할 수 없기 때문이다. 하지만 분명 이 예시는 펜로즈 테셀레이션보다 흥미롭지 않다. 이런 지루한 예시를 제외하기 위해, 비주기적 테셀레이션을 임의의 큰 주기적인 부분을 포함하지 않는 테셀레이션으로 정의할 수 있다.
어떤 테셀레이션이 비주기적 테셀레이션만 생성(hull)하면 비주기적이라고 한다. 테셀레이션의 생성 는 T를 평행이동한 가능한 모든 T+x를 포함하는데, 이들을 T의 평행이동으로 생각할 수 있다. 형식적으로 이것은 국소 위상수학에서 집합 의 닫힌 부분 집합(closure)이다.[5] 국소 위상수학(각각에 대응되는 행렬)에서 두 테셀레이션이 보다 덜 평행이동했을 때 지름 의 구간에서 일치하면 에 대해 닫혀 있다고 한다.
위보다 더 쉬운 예시를 들면, ...aaaaaabaaaaa...처럼 직선 모양의 1차원 테셀레이션 T를 생각하자. 여기서 a는 길이 1의 간격을 나타내고 b는 길이 2의 간격을 나타낸다. 그래서 이 테셀레이션 T는 무수히 많은 a들과 한 개의 b로 만들어지는데, b를 중심 0이라고 하자. T의 모든 평행이동은 b가 어딘가 있고 나머지는 모두 a일 것이다. b가 에 중심이 있을 때 테셀레이션의 순서는 a로만 이루어진 주기적인 테셀레이션과 국소 위상수학에서 합동이다. 따라서 T는 주기적 테셀레이션 ...aaaaaa...를 부분집합으로 가지기 때문에 주기적 테셀레이션이 아니다.
잘 정의된 테셀레이션(예를 들어 유한하게 많은 국소 패턴으로 구성되는 테셀레이션)에 대해서, 주기적이지 않고 반복되는 테셀레이션(각 타일이 고르게 밀집하게 테셀레이션에서 모여 있음)은 비주기적 테셀레이션이다.[5]
비주기적 테셀레이션의 구체적인 발견은 1961년에 최초로 있었는데, 논리학자 하오 왕이 도미노 문제가 결정 가능한지 연구했을 때였다. 결정 가능하다는 것은 유한한 프로토타일 집합이 주어졌을 때, 이것이 평면을 테셀레이션할 수 있는지 결정하는 알고리즘이 존재한다는 것이다. 왕은 평면을 채울 수 없는 타일 집합과 주기적으로 채울 수 있는 평면 집합을 찾으려고 알고리즘을 발견했다. 이로써 평면을 채울 수 있는 유한한 프로토타일 집합 각각이 주기적 테셀레이션도 만들 수 있다면 이 결정 알고리즘이 존재한다는 걸 보였다. 1964년 로버트 버거는 테셀레이션 문제가 사실 결정 가능하지 않다는 것을 보여서 비주기적 프로토타일 집합을 찾았다.[6][7] 이 증명에 버거가 쓴 집합은 왕 타일 20,426개가 필요했는데, 나중에 104개로 개수를 줄였다. 한스 레우히리는 40개 왕 타일만 필요한 비주기 집합을 찾았다.[8] 왕 타일 6개로 된 더 간단한 비주기적 집합을 래피얼 미셸 로빈슨이 1971년에 발견했다.[9] 로저 펜로즈는 1973년과 74년에 3개의 집합을 추가로 발견했는데, 2개의 타일만 필요했다. 로버트 애먼은 몇개의 집합을 1977년에 더 찾았다.[8]
비주기적인 펜로즈 테셀레이션은 비주기적인 프로토타일 집합뿐 아니라 대체하기(subtitution)나 잘라서 사영하기(cut-and-project) 방법도 써서 만들 수 있다. 준결정이 연구된 이후 물리학자와 수학자들이 비주기적 테셀레이션을 열심히 연구했다. 펜로즈 테셀레이션에 쓰이는 니콜라스 호베르트 드 브뢰인의 잘라서 사영하기 방법이 마이어 집합 이론의 예라는 게 결국 밝혀졌다.[10][11] 현재 비주기적 테셀레이션에 대한 여러 문헌이 있다.[5]
비주기적 테셀레이션을 만드는 몇 방법이 알려져 있다. 그 중 일부는 무한한 비주기적 타일 집합을 사용한다.[12][13] 비주기적인 계층 구조를 주로 써서 만들 수 있다. 그러나 도미노 문제의 비결정성에 따라서 무한히 많은 만드는 원리가 있을 것이고, 비주기적이라는 걸 증명할 수 없는 비주기적 테셀레이션도 존재한다.
어떤 테셀레이션이 계층적인 구조를 가지는지 확인하는 일반적인 정의가 현재 없지만, 대체하기 방법을 쓴 테셀레이션과 커누스, 라우히리, 로빈슨의 테셀레이션이 계층적이라는 건 확실하다. "비주기적 테셀레이션"에서 나아가서 "비주기적 계층 테셀레이션"은 계층적인 구조를 가지는 비주기적 테셀레이션만 허용하는 타일 집합을 말한다
이런 타일 집합이 만드는 모든 테셀레이션에서 계층적인 구조가 만들어진다. (이 구조는 타일 대체하기로 설명할 수 있다) 이런 타일로는 어떤 주기적 타이링도 만들 수 없느데, 단순히 평행 이동으로 전체 계층 구조와 같게 만들 수 없기 때문이다. 아래는 로빈슨의 1971년 타일이다.
이런 타일로 만든 테셀레이션은 사각형 격자 계층만 만들 수 있는데, 임의의 주황색 사각형 중심은 더 큰 주황색 사각형의 중심이 되고, 이는 무한히 반복된다. 어떻게 평행이동을 해도 이동한 거리보다 더 큰 정사각형이 있으므로, 원래와 같아질(invariant) 수 없다.
로빈슨은 타일들이 서로 맞아서 원래의 타일보다 더 큰 블록을 만들어내는 걸 계속할 것이라고 구조를 귀납적으로 증명했다. 어느 테셀레이션이 계층적인 구조를 가질 수밖에 없다는 이 아이디어를 비주기적 테셀레이션을 만들 때 많이 사용한다.
타일 대체하기 방법으로 다양한 비주기적 테셀레이션을 만들 수 있다. 아래는 예시 중 하나인 의자 테셀레이션이다. 대체하기 테셀레이션은 비주기적이지만, 의자 타일 자체는 비주기적이 아니어서 주기적 테셀레이션도 만들 수 있다.
하지만 아래의 타일은 의자 대체하기 구조를 합쳐놓았기 때문에 타일 자체도 비주기적이다.[14]
펜로즈 타일과 애먼의 타일 몇 개가[15] 대체하기 테셀레이션 구조를 명쾌하게 합쳐놓은 첫 번째 예시였다. 조슈아 소콜라,[16][17] 로저 펜로즈,[18] 루트비히 단체,[19]와 체임 굿맨-스트러스[14]가 이후 타일을 발견했다. 샤하르 모제스는 모든 1차원 대체하기가 규칙을 통해 합쳐질 수 있다는 걸 보이면서 최초로 일반적으로 테셀레이션을 구성했다.[13] 찰스 래딘은 콘웨이 바람개비 대체 테셀레이션을 합치는 규칙을 찾아냈다.[20] 1998년 체임 굿맨-스트러스는 약한 조건에서 모든 테셀레이션 대체하기 구조에서 국소적으로 대응시키는 규칙을 찾을 수 있다는 걸 보였다.[12]
비주기적 테셀레이션은 고차원 구조를 낮은 차원으로 사영시켜서 만들 수 있고, 비주기적 구조로 합쳐져서 비주기적 테셀레이션이 되는 경우도 있다. 드 브라운의 업적에서도 나와 있듯이, 펜로즈 테셀레이션이 가장 최초이자 유명한 예시이다.[21] 필요충분조건은 알려져 있지만, 대응하는 규칙으로 합쳐서 테셀레이션을 잘라 사영하는 대수적인 완전한 정의는 아직 없다.[22]
비주기적 방법을 만드는 몇 가지 방법만 발견되었다. 야르코 카리는 타일이 직선으로 암호화된 실수에 2 또는 2/3을 곱해 비주기적 왕 타일들을 만들었다. (암호화는 비티 수열의 항의 차이로 만들어진 스튀름 순서와 관련이 있다) 이는 2n/3m이 양의 정수 m, n에 대해 절대 1이 될 수 없다는 사실을 토대로 만든 것이다.[23] 이 방법은 나중에 굿맨-스트러스가 쌍곡면 위의 강하게 비주기적인 테셀레이션을 하기 위해 사용했다.[24] 샤하르 모제스는 비주기적 테셀레이션을 구성하는 여러 가지 대안을 찾았는데, 준-단순(semi-simple) 리군에서처럼 색다른 조건에서도 찾았다.[25] 블록과 와인버거는 종순 다양체이 아닌 모든 비주기적 테셀레이션을 만드려고 호몰로지 방법을 썼다.[26] 조슈아 소콜라도 대안 조건에 대해서 비주기성을 만들 다른 방법을 찾았다.[27] 이 방법으로 만든 타일은 대체하기로 만든 것보다 보통 훨씬 작다.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.