확률변수
이 균등분포
를 따를 때, 중심극한정리에 따르면
은 정규분포로 분포수렴한다.
분포 수렴(convergence in distribution), 약한 수렴(weak convergence)은 확률변수의 누적 분포 함수가 수렴하는 것을 의미한다. 확률변수
와 각각의 누적 분포 함수
에 대하여, 어떤 확률변수
와 와 확률 분포 함수
가 존재하여,
- 모든 실수
에 대하여 ![{\displaystyle \lim _{n\to \infty }F_{n}(x)=F(x)}](//wikimedia.org/api/rest_v1/media/math/render/svg/732e5a10862bfd7c3d470e681f53f4cd11070a15)
가 성립할 경우,
은
로 분포수렴한다고 정의한다. 기호로는
![{\displaystyle {\begin{aligned}&X_{n}\ {\xrightarrow {d}}\ X,\ \ X_{n}\ {\xrightarrow {\mathcal {D}}}\ X,\ \ X_{n}\ {\xrightarrow {\mathcal {L}}}\ X,\ \ X_{n}\ {\xrightarrow {d}}\ {\mathcal {L}}_{X},\\&X_{n}\rightsquigarrow X,\ \ X_{n}\Rightarrow X,\ \ {\mathcal {L}}(X_{n})\to {\mathcal {L}}(X),\\\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/264d1885b5e04a1094c7f6882d4f5708c7cd52e9)
등이 사용된다. 여기에서
은 확률 분포를 가리키며, 예를 들어
가 표준정규분포라면
와 같이 표기할 수 있다.
분포 수렴은 확률변수들이 같은 확률 공간에 있을 필요가 없으며, 각 확률변수의 분포만이 고려된다. 분포 수렴의 예제로는 중심극한정리가 있다.
확률변수를 다변수 확률변수로 확장할 경우, 위의 정의는 다음과 같이 바꿀 수 있다. 집합
가
일 때(continuity set),
- 에 대하여
![{\displaystyle \lim _{n\to \infty }\Pr[X_{n}\in A]=\Pr[X\in A]}](//wikimedia.org/api/rest_v1/media/math/render/svg/03254baa583b6b71b131bb4ab461adee6bf7aab0)
가 성립한다면
은
로 분포수렴한다.
성질
- 레비 연속성 정리(Lévy's continuity theorem): 확률변수
가
로 분포수렴하는 것과
의 특성함수가
의 특성함수로 점마다 수렴하는 것은 동치이다.
- 분포수렴은 확률 밀도 함수의 수렴을 보장하지 않는다. 가령,
에 대응하는 확률변수는 균등분포
로 수렴하지만,
은 수렴하지 않는다.
- 확률수렴이나 거의 확실한 수렴은 분포수렴을 포함한다.
- Portmanteau theorem: 분포수렴은 다음 중 하나와 동치이다.
- 모든 유계 연속 함수
에 대해 ![{\displaystyle E[f(X_{n})]\to E[f(X)]}](//wikimedia.org/api/rest_v1/media/math/render/svg/5cbfaaa1884035651fa841e606b13f1aea409aa3)
- 모든 유계 립시츠 연속 함수
에 대해 ![{\displaystyle E[f(X_{n})]\to E[f(X)]}](//wikimedia.org/api/rest_v1/media/math/render/svg/5cbfaaa1884035651fa841e606b13f1aea409aa3)
- 위로 유계이고 위에서 반연속인 함수
에 대해 ![{\displaystyle \lim \sup[Ef(X_{n})]\leq E[f(x)]}](//wikimedia.org/api/rest_v1/media/math/render/svg/bcbc837cc10cb3db5cb244834afd2ff077d88734)
- 아래로 유계이고 아래에서 반연속인 함수
에 대해 ![{\displaystyle \lim \inf[Ef(X_{n})]\geq E[f(x)]}](//wikimedia.org/api/rest_v1/media/math/render/svg/1dce34c1c69011638f54eda01258e5d17aa0249b)
- 모든 닫힌 집합
에 대해 ![{\displaystyle \lim \sup \Pr[X_{n}\in C]\leq \Pr[X\in C]}](//wikimedia.org/api/rest_v1/media/math/render/svg/f4b9ebb2941cb6cee0113d55008fe78322d2a064)
- 모든 열린 집합
에 대해 ![{\displaystyle \lim \inf \Pr[X_{n}\in U]\geq \Pr[X\in U]}](//wikimedia.org/api/rest_v1/media/math/render/svg/968785a60e5cfc20ee895c47028dc963347723a4)
- 모든
의 continuity set에 대해 ![{\displaystyle \lim \Pr[X_{n}\in A]=\Pr[X\in A]}](//wikimedia.org/api/rest_v1/media/math/render/svg/9d36590745648a586aa149754ab8f4a893b16194)