Loading AI tools
위키백과, 무료 백과사전
미분위상수학에서 모스 호몰로지(영어: Morse homology)는 콤팩트 매끄러운 다양체의 호몰로지를 그 위의 실수 값 함수를 통해 구성하는 방법이다.[1][2] 다양체의 위상을 실수 값 함수를 통해 분석하는 이론인 모스 이론의 일부이다.
콤팩트 매끄러운 다양체 위에 임의의 리만 계량 와 모스 함수 를 정의하자. 이 경우 그 기울기 벡터장 을 정의할 수 있다. 각 임계점 에 대하여, 의 안정 부분 공간(stable subspace) 과 불안정 부분 공간(unstable subspace) 을 정의할 수 있다. 만약 모든 임계점들의 안정 부분공간과 불안정 부분공간이 횡단 교차(transversal intersection)한다면 (즉, 모든 에서 이라면) 순서쌍 를 모스-스메일 함수(Morse-Smale函數, 영어: Morse–Smale function)라고 한다.[3] 이는 마스턴 모스와 스티븐 스메일의 이름을 딴 것이다.
의 기울기 흐름(영어: gradient flow)은 의 임계점들을 연결시킨다. 두 임계점 , 사이의 기울기 흐름들의 모듈라이 공간 을 정의하자. 이 모듈러스 공간의 차원은 임계점들의 모스 지표의 차의 절댓값과 같다.
모스-스메일 함수 가 주어진 콤팩트 매끄러운 다양체 위에, 모스 사슬 복합체(Morse사슬複合體, 영어: Morse chain complex) 는 모스 지표가 인 임계점들로 생성되는 자유 아벨 군이며, 그 위에 정의된 경계 연산자
는 을 로부터 시작하는 의 기울기 흐름들의 (부호가 붙은) 종점들의 합으로 대응시킨다. 이 사슬 복합체로부터 정의한 호몰로지
를 모스 호몰로지라고 한다. 이는 모스-스메일 함수의 선택에 의존하지 않으며, 또한 다른 호몰로지 이론(특이 호몰로지, 세포 호몰로지 등)과 일치함을 보일 수 있다.
모스 호몰로지는 초대칭 양자역학과 밀접한 관계를 가진다. 이를 사용하여, 모스 (코)호몰로지를 드람 코호몰로지와 호지 이론을 사용하여 재정의할 수 있다.[4][5] 이는 에드워드 위튼이 발견하였고,[6] 모스-위튼 코호몰로지(영어: Morse–Witten cohomology)라고 불린다.
모스 함수 가 주어진 콤팩트 리만 다양체 위에 다음과 같은 연산자들을 정의하자.
그렇다면 의 고윳값에 따라, 위의 차 미분 형식들의 공간 을 다음과 같이 분해할 수 있다.
이 경우, 일 때 호지 이론에 따라서
이다. 여기서 은 드람 코호몰로지다. 반면, 로 보내자. 그렇다면 는 모스 지표가 인 임계점 근처에 국소화된 차 미분형식들로 이루어진 기저를 가진다. 즉,
이다. 여기서 는 모스 지표가 인 임계점들의 개수다.
이 경우, 다음과 같은 모스-위튼 복합체(Morse-Witten複合體, 영어: Morse–Witten complex)가 존재한다.
여기서 공경계 연산자 는 모스-스메일 호몰로지에서의 기울기 흐름과 대응한다. 이 복합체의 코호몰로지는 드람 코호몰로지와 일치하며, 모스-위튼 코호몰로지라고 한다.
마스턴 모스가 변분법을 연구하면서 1934년에 도입하였다.[7]
1950년대에, 라울 보트는 모스 이론을 특이점들이 고립돼 있지 않고 닫힌 집합을 이루는 경우로 확장한 모스-보트 이론(Morse-Bott理論, 영어: Morse–Bott theory)을 도입하였고, 이를 사용하여 위상 K이론의 보트 주기성(영어: Bott periodicity)을 증명하였다.[8][9][10]
1982년에 에드워드 위튼은 모스 이론을 초대칭 양자역학을 사용하여 재정의하였다. 이를 모스-위튼 이론(Morse-Witten理論, 영어: Morse–Witten theory)이라고 한다.[6] 1988년에 안드레아스 플뢰어(독일어: Andreas Floer)는 함수 공간에서의 모스 코호몰로지를 사용하여, 심플렉틱 다양체 및 3차원 다양체에 대한 플뢰어 호몰로지를 정의하였다.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.