素数が無数に存在することの証明
素数が無数に存在することの証明方法 ウィキペディアから
素数が無数に存在することの証明方法 ウィキペディアから
素数が無数に存在することの証明(そすうがむすうにそんざいすることのしょうめい)は、古くは紀元前3世紀頃のユークリッドの『原論』に記され、その後も多くの証明が与えられている。素数が無数に存在することは、しばしばユークリッドの定理(ユークリッドのていり、英: Euclid's theorem)と呼ばれる。
『原論』第9巻命題20[1]で、素数が無数に存在することが示されている。その証明は、次の通りである[2]。なお「任意」は誤訳と思われる。
a, b, …, k を任意に与えられた素数のリストとする。その最小公倍数 P ≔ a × b × ⋯ × k に 1 を加えた数 P + 1 は、素数であるか、合成数のいずれかである。素数であれば、最初のリストに含まれない素数が得られたことになる。素数でなければ、何らかの素数 p で割り切れるが、p はやはり最初のリストに含まれない。なぜならば、リスト中の素数は P を割り切るので、P + 1 を割り切ることは不可能だからである。任意の素数のリストから、リストに含まれない新たな素数が得られるので、素数は無数に存在する。
この証明は、しばしば次のような背理法の形で表現される。
この形の証明のために、「ユークリッドは、背理法で素数が無数にあることを証明した」「ユークリッドの証明は、存在のみを示しており、具体的な構成の手続きを示していない」「ユークリッドは、最初のいくつかの素数の積に1を加えた数が素数であることを証明した」などの誤解をする者がいるが、いずれも正しくない[3]。『原論』の証明は背理法ではなく、直接証明である場合分けによるものである。また、最後の主張は「 2 × 3 × 5 × 7 × 11 × 13 + 1 = 59 × 509 = 30,031 」という反例により、歴史的にのみならず数学的にも誤りである。
ゴールドバッハは、1730年7月にオイラーに宛てた手紙の中で、フェルマー数
を利用して、素数が無数にあることを証明している[5]。
フェルマー数たちが互いに素であることが示されれば、無数にあるフェルマー数の素因子を考えることにより、無数に素数を得る。実際、m に関する数学的帰納法により、簡単に
が得られるので、ある素数 p が2つのフェルマー数を割り切るとすると、p は 2 も割り切ることになって不合理である。
オイラーによる証明[4][6]は、リーマンゼータ関数のオイラー積表示を用いたものである。
素数は有限個の p1, …, pn からなると仮定する。各素数 pi に対し、等比級数の公式により
が成り立つ。i = 1, …, n における両辺の総乗を取ると、任意の自然数は素数の積として一意に表せる(算術の基本定理)ことより、
素数の逆数和は(無限大に)発散することが示されば、素数は無数に存在することが直ちに従う。素数の逆数和が発散することは、オイラーが初めて証明したが、以下はエルデシュが1938年に発表した、より簡潔な証明である[6]。
素数の逆数和は収束すると仮定する。n 番目の素数を pn で表すことにすると、ある番号 k が存在して
である。素数全体を2つのグループに分け、p1, …, pk を「小さい」素数、pk+1 以降を「大きい」素数と呼ぶことにする。N 以下の自然数で、「大きい」素数で割れる数と、「小さい」素数でしか割れない数に分け、前者の個数を N1、後者の個数を N2 とおく。当然 N = N1 + N2 である。
以下、N1 と N2 の大きさを見積もる。N 以下の p の倍数の個数は、床関数を用いて
と表せるから、
を得る。ここに、最後の不等号は上記の仮定から従う。次に、x を小さい素数でしか割れない N 以下の自然数とし、x = uv2(u は平方因子を含まない) と表す。u の可能性は高々 2k 通りであり、v2 ≤ x ≤ N であるから、
を得る。よって、
となる。しかし、この式は N = 22k+2 に対して成り立たない。
フュルステンベルグの証明は、トポロジーを用いたものである[4][6]。彼は、まだ学部生であった1955年に、証明を発表した。
整数全体からなる集合 Z に、両方向への無限等差数列
(ただし、a, b は整数で、a ≠ 0)全体を開基とする位相を定める。換言すれば、この位相における開集合は、(空集合であるか)任意個の無限等差数列の和集合である。このとき、空でない有限集合は開集合ではないことに注意する。
任意の無限等差数列は、開集合であると同時に、
という表示により、閉集合でもある。p1, …, pn が素数全体と仮定すると、
は有限個の閉集合の和集合であるから閉集合である。したがって閉集合 A の補集合 Ac = Z∖A は開集合である。ところが ±1 以外の任意の整数は何らかの素数で割り切れるから、Ac = {±1} である。これは空でない有限集合であるため開集合ではなく、矛盾が生じる。
この積の分子は奇素数であり、分母はそれぞれに対応する分子に一番近い 4 の倍数である。もし素数が有限個ならば π は有理数として表すことができる。しかし π は無理数なので、背理法より素数は無限に存在する。
現代においても、新たな証明が次々に提案されている。その中でも、2006年に発表されたフィリップ・サイダックによる証明は非常に簡潔である[8][9]。
n は2以上の整数とする。n と n + 1 は互いに素 なので、N2 := n(n + 1) は少なくとも2つの異なる素因子を持つ。同様に、N2 と N2 + 1 は互いに素なので、N3 := N2(N2 + 1) は少なくとも3つの異なる素因子を持つ。この操作を続けることにより、任意に多くの異なる素因子を持つ数を構成することができるので、素数は無数に存在する。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.