体 k 上の n 変数多項式環 k[X1, …, Xn] は n 次元である。スキーム論の言葉で言えば、体上の多項式環はアフィン空間に対応するから、この結果は基本的と考えることができる。一般に、環 R が n 次元のネーター環ならば多項式環 R[X] は n + 1 次元である[7]。ネーター性を仮定しないならば R[X] の次元は n + 1 以上 2n + 1 以下の任意の値を取りうる。
ネーター局所環は有限次元である。
R の素イデアル全体の成す空間にザリスキー位相を備えた環のスペクトルSpec(R) の定義から直ちに、R のクルル次元がちょうどそのスペクトルの既約次元に一致することが分かる。このことは、R のイデアルと Spec(R) の閉部分集合との間のガロア接続を考え、R の素イデアルをスペクトルの定義により(ガロア対応で対応付けられる)閉部分集合の生成点に対応させることを見ればよい。
環 R 上の加群 M に対し、M のクルル次元を、M を忠実加群とするような R の剰余環のクルル次元によって定める。すなわち、等式
を満足するようなものとして定義する。ただし、零化イデアルAnnR(M) は R から M 上の R-線型自己準同型の環への自然写像 R→ EndR(M) の核である。
A.I. Kostrikin and I.R. Shafarevich (edd), Algebra II, Encyclopaedia of Mathematical Scieinces 18, Springer-Verlag, 1991, ISBN 3-540-18177-6. Sect.4.7.