本項では、ZFC集合論において決定不能であることが証明されている命題の一覧を掲げる。それらの命題は(ZFCが無矛盾であれば)ZFCの公理からは証明することも反証することもできない。以下では「ZFCが無矛盾であれば」などの但し書きは割愛する。
- ボレル予想 - 任意の強零集合(英語版)は可算であるという予想。
- 任意の -稠密な実数の部分集合が順序同型であるかどうか - 実数の部分集合 X が-稠密であるとは、任意の開区間が X の元を個以上含むことを言う[3]。
- ススリン線の存在(SH) [4] - ダイヤモンド原理から従うことが知られている[5] 。逆にMA + ¬CHからはススリン木が存在しないことが従う[5] [6]。 また、CHを仮定してもススリン木の存在は証明できない[7]。
- クレパ木の存在(KH) - ただし到達不能基数の存在が無矛盾であるとき[8]。
- フビニの定理の拡張[9]
- ある種のディオファントス方程式の解の存在性(ヒルベルトの第10問題)[10]
- 群論におけるホワイトヘッドの問題(英語版)(シェラハ、1974年) - A を任意のアーベル群とするとき、Ext1(A, Z) = 0 ならば A は自由アーベル群か?
- バナッハ環に対するカプランスキー予想:コンパクトハウスドルフ空間X上の複素数値連続関数のなす環C(X)からバナッハ環へのC代数準同型は常に連続であるという予想
- 実数体上の3変数多項式環 A = R[x,y,z] の商体をM = R(x,y,z)とする. このときMのA加群としての射影次元 は 2または3であるが, それが2であることは ZFC とは独立である。更にその射影次元が2である事と連続体仮説は同値である.[11]
"The Consistency of the Continuum Hypothesis" (1940)
Baumgartner, J., All -dense sets of reals can be isomorphic, Fund. Math. 79, pp.101 -- 106, 1973 Solovay, R. M.; Tennenbaum, S. (1971). “Iterated Cohen extensions and Souslin's problem”. Annals Of Mathematics. Second Series 94 (2): 201–245. doi:10.2307/1970860. JSTOR 1970860. Baumgartner, J., J. Malitz, and W. Reiehart, Embedding trees in the rationals, Proc. Nat. Acad. Science, U.S.A., 67, pp. 1746 -- 1753, 1970
Shelah, S., Free limits of forcing and more on Aronszajn trees, Israel Journal of Mathematics, 40, pp. 1 -- 32, 1971
Devlin, K., and H. Johnsbraten, The Souslin Problem, Lecture Notes on Mathematics 405, Springer, 1974
Silver, J., The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, in Axiomatic Set Theory, Proc. Symp, in Pure Mathematics (13) pp. 383 - 390, 1967
Friedman, Harvey (1980). “A Consistent Fubini-Tonelli Theorem for Nonmeasurable Functions”. Illinois J. Math. 24 (3): 390–395. MR573474.