Loading AI tools
ウィキペディアから
数理論理学において論理積(ろんりせき、英: logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。
二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。また P ∧ Q の形をした命題を連言命題(conjunctive proposition)、その中に現れる命題 P や Q を連言肢(conjunct)という[1]。
の二つの命題の論理積は、
論理積は、否定と論理和を用いて表すことができる(ド・モルガンの法則)。
逆に、否定と論理積を用いて論理和を表すこともできる。
論理積の真理値表
命題 P | 命題 Q | P ∧ Q |
---|---|---|
真 | 真 | 真 |
真 | 偽 | 偽 |
偽 | 真 | 偽 |
偽 | 偽 | 偽 |
を使用して と書く。
記号を使用して と書く。論理回路のページを参照。
z = x & y;
$z = $x & $y;
のように使用される。
単なる論理積は&&
で表され
if (x==0 && y==0) ;
のように使用される。
VBScriptではAnd
で表され、
z = x And y
のように使用される。
Lispでは
(and x y)
だが、さらに可変長で
(and x0 x1 ...)
のように記述できる。
各プログラミング言語における論理積の表記と意味は、短絡評価とも密接な関係がある。
記号 | Unicode | JIS X 0213 | 文字参照 | 名称 |
---|---|---|---|---|
∧ | U+2227 | - | ∧ ∧ ∧ | 論理積 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.