巡回畳み込み
ウィキペディアから
巡回畳み込み(じゅんかいたたみこみ、英語: circular convolution)あるいは循環畳み込み(じゅんかんたたみこみ、英語: cyclic convolution)とは、二つの非周期関数に対し、一方の周期和を用いて、もう一方を通常の方法で畳み込むことを意味する。このような状況は巡回畳み込み定理の文脈において現れる。もし無限の積分区間が、ちょうど一周期分へと減らされた場合には、両方の関数の周期和として、同様の畳み込み作用を表現することが出来る。このような状況は離散時間フーリエ変換の文脈において現れ、周期畳み込みとも呼ばれる。特に、二つの離散シーケンスの積に対する離散時間フーリエ変換は、各シーケンスに対するその変換の周期畳み込みである[1]。
周期 T の周期関数 xT と、他の関数 h との畳み込みはふたたび周期関数となり、次のような形で、有限区間の積分として表現される:
ここで to は任意のパラメータであり、hT は h の周期和で、それは次のように定義される:
この演算は関数 xT と hT の周期畳み込みである。もし xT が他の関数 x の周期和であるなら、同様の演算は関数 x と h の巡回畳み込みと呼ばれる。
離散シーケンス
要約
視点
同様に、周期 N の離散シーケンスに対して、関数 h と x の巡回畳み込みを次のように書くことが出来る:
関連項目
注釈
参考文献
Wikiwand - on
Seamless Wikipedia browsing. On steroids.