Loading AI tools
ウィキペディアから
バースカラ(Bhāskara、マラーティー語: भास्कराचार्य、1114年 - 1185年)は、インドの数学者で天文学者。7世紀の数学者バースカラ1世と区別するためバースカラ2世 (Bhaskara II) またはバースカラーチャーリヤ(Bhaskara Achārya、バースカラ先生の意)とも呼ばれる。南インドの現在のマハーラーシュトラ州ビード県 (Beed district, Maharashtra) にあたる Bijjada Bida でバラモン階級の家に生まれる。当時のインド数学の中心地であったウッジャイン (Ujjain) の天文台の天文台長を務めた。前任者には、ブラーマグプタ(598年 - 665年)やヴァラーハミヒラがいる。西ガーツ山脈地方に住んでいた。
代々、宮廷学者の地位を世襲しており、バースカラの息子やその子孫もその地位を継承していることが記録に残っている。父マヘーシュヴァラ(Mahesvara)は占星術師で、バースカラに数学を教え、バースカラはそれを息子 Loksamudra に継承させた。Loksamudra の息子は1207年に学校設立を助け、そこでバースカラの書いた文書の研究を行った[1]。
バースカラは、12世紀の数学および天文学の発展に大きな業績を残した。主な著書として、『リーラーヴァティ』 (Lilavati) (主に算術を扱っている)、『ビージャガニタ』 (Bijaganita) (代数学)、『シッダーンタ・シローマニ』 (Siddhānta Shiromani) (1150年)がある。『シッダーンタ・シローマニ』は Goladhyaya(球面)と Grahaganita(惑星の数学)の2部構成になっている。
バースカラ2世の算術の本は、彼の娘リーラーヴァティのために書かれたという伝説がある。ペルシア語版の『リーラーヴァティ』に書かれていた物語は、バースカラ2世がリーラーヴァティのホロスコープを研究して占ってみたところ、娘がある特定の時刻に結婚しないと彼女の夫が結婚後間もなく死ぬとでた、というものである。娘にその正しい時刻を警告するため、バースカラ2世は水の入った容器を置き、その上に底に小さな穴の開いたカップを浮かべ、ちょうどよい時刻にカップが沈むように設定した。そして、リーラーヴァティ にはそれに近づかないよう警告した。しかし娘は奇妙に思ってそれを覗き込み、鼻につけていた真珠がカップに落ち、沈み方が変わってしまった。そのため、結婚が間違った時間に執り行われ、彼女は間もなく未亡人となった。[2]
バースカラ2世は、有限の数をゼロで割ると(ゼロ除算)無限大になるという近代的な数学と同じ考え方をしていた[3]。なお、現代数学の観点では、ゼロ除算はいかなるアプローチから定義を試みようとも必ず破綻に至るとして、「値を定義し得ないため、計算は不可能である」との見解で一致している。詳細はゼロ除算を参照。
バースカラ2世の数学への貢献には、以下のようなものがある。
バースカラ2世の算術についての著書『リーラーヴァティ』は、定義、算術用語、利子計算、算術級数と幾何級数、平面幾何学、立体幾何学、日時計の影、不変方程式の解法、組合せなどを扱っている。
『リーラーヴァティ』は13章からなり、算術だけでなく代数学や幾何学も扱い、一部は三角法や求積法を扱っている。具体的には、次のような内容がある。
彼の著書は体系化、解法の改善、新たな問題の導入などの点が優れている。さらに『リーラーヴァティ』には素晴らしい例題もあり、バースカラ2世は『リーラーヴァティ』で学ぶ学生にその内容を具体的に役立てて欲しいと意図していたとも思われる。
『ビージャガニタ』(代数学)は12章からなる。正の数に(正と負の)2つの平方根があることを初めて示した文書である。次のような内容を含む。
バースカラ2世は ax2 + bx + c = y という形式の不定二次方程式の解法としてチャクラバーラ法を導き出した。ペル方程式と呼ばれる Nx2 + 1 = y2 という形式の問題の整数解を求めるバースカラ2世の方法も重要である(こちらもチャクラバーラ法)。
『シッダーンタ・シローマニ』(1150年)では、三角法を扱っており、正弦関数の数表や各種三角関数の関係も記している。また、いくつかの興味深い三角法に混じって球面三角法も発見している。バースカラ2世以前のインドの数学者は三角法を計算の道具としか見ていなかったが、バースカラ2世自身は三角法に大きな興味を持っていたように思われる。三角関数の加法定理といわれる や なども扱っている。
『シッダーンタ・シローマニ』は天文学を中心に扱っているが、それ以前の著作にはない様々な理論が含まれている。特に、いくつかの三角法の成果に沿った微分法や解析学の基本概念、積分法の考え方などが見られる。
その著作から、バースカラ2世は微分法のいくつかの考え方を知っていたと見られている。しかし、それら成果の使い方を理解していなかったと見られ、そのために数学史家からは一般に無視されている。バースカラ2世は関数の極値で微分係数がゼロになることを示唆しており、無限小の概念を知っていたことを示している[4]。
マーダヴァ(1340年 - 1425年)と14世紀から16世紀にかけてのケーララ学派 の数学者ら(パラメーシュヴァラを含む)は、バースカラ2世の業績を発展させ、インドにおける微分積分学を発展させていった。
ブラーマグプタが7世紀に発展させた天文モデルを使い、バースカラ2世は恒星年(地球が太陽の周りを一周するのにかかる時間)の長さを(『スールヤ・シッダーンタ』 (Surya Siddhanta) と同じく)365.2588日とするなど[要出典]、様々な天文学上の量を定義した。現在の測定値は365.2563日で、その差異はたったの3.5分である。
彼の天文学の著書『シッダーンタ・シローマニ』は2つの部分からなる。前半は数学的天文学であり、後半は球面を扱っている。
前半部の12章では、次のような内容を扱っている。
後半は球面に関する13章からなる。次のような内容を扱っている。
1150年、バースカラ2世は永久に回り続ける車輪について記述しており、永久機関の古い例の1つとなっている[6]。
バースカラ2世は Yasti-yantra と呼ばれる測定器具を使っていた。単純な棒状になったり、V字型に変形させたりでき、定規と組み合わせて角度を測るのに主に使ったという[7]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.