Loading AI tools
ウィキペディアから
衝撃波(しょうげきは、英: shock wave)は、主に流体中を伝播する、圧力などの不連続な変化のことであり、圧力波の一種である。
主に媒質中を超音速で移動する物体の周りに発生し、媒質中の音速よりも速い速度、すなわち超音速で伝播、急速に減衰して最終的には音波(ソニックブーム)となる。
また、波面後方で圧力・温度・密度の上昇する圧縮波であるが、自然界で発生するほとんどの衝撃波は近傍に膨張波を伴っている。
衝撃波の強さは、衝撃波前方と後方の圧力比・温度比・密度比・速度比などで示される。これらの比は衝撃波マッハ数(衝撃波伝播速度を衝撃波前方の音速で割った値)に対してそれぞれ1対1で対応するため、衝撃波マッハ数も衝撃波の強さを示す値として用いられる。なお、理想気体中でのこのような比はランキン・ユゴニオの式によって関係付けられる。
超音速飛行中の戦闘機[2]やロケット、隕石や大気圏再突入した人工衛星などの周囲で発生する。また弾丸による発生も確認されている。地表に達すると窓ガラスを割るなどの被害を生じ、減衰してもソニックブームと呼ばれる大きな騒音になる。衝撃波を発生させるには大きな力が必要で、造波抵抗という抗力として作用するため、超音速飛行を実現するうえで大きな技術的課題となっている。
爆発によっても発生することがある。爆発の膨張速度が音速を超えると、表面に衝撃波が生じる(爆轟)。自然界の例としては火山噴火や雷などが挙げられる。人工的な爆発では、地表核実験などがあげられる。発生した衝撃波は伝播とともに急激に減衰して音波となり、「ドン」という、いわゆる爆発音になる。
ごく小規模なものとして、鞭を振るったときに先端部が音速を超えて発生するものがある。パシッと鳴る音は、衝撃波が減衰したソニックブームによる[3]。 「ヒュウ」と鳴る音はこれとは別の、音速に関係のないエオルス音と言われるものである。
衝撃波の理論研究の歴史は、次のようである[4]。
音波だけでなく、光(電磁波)においても衝撃波に似た現象が観測される。 一般に媒質中の光速は真空中より遅く、例えば水中では真空中の3/4である。素粒子などが媒質中を高速で移動する際、これを上回ると発生する。
荷電粒子が原子内を通過すると、電子軌道が乱され電子の偏りが生じる。偏りは光子を放出して元に戻るが、通常は光子は打ち消し合って消えてしまう。しかし、荷電粒子の速度がその媒質での光速を超えていた場合、放出された光子の速度を超えて次の光子が放出されるため、追いつけず打ち消し合えない。この結果、光子は外部に飛び出し、チェレンコフ放射として観測される。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.