Spazio totalmente limitato
Da Wikipedia, l'enciclopedia libera
Da Wikipedia, l'enciclopedia libera
In matematica, uno spazio metrico si definisce totalmente limitato se, fissato un raggio arbitrario, è possibile ricoprirlo con un numero finito di palle di quel raggio.
Uno spazio metrico si dice totalmente limitato se per ogni raggio esiste una collezione finita di palle tali che:
La nozione di spazio totalmente limitato è molto simile a quella di spazio limitato, ma è in realtà più forte: è infatti facile dimostrare che ogni spazio totalmente limitato è limitato[1]. D'altro canto, esistono esempi di insiemi limitati che non sono totalmente limitati; ad esempio, considerando il piano con la metrica discreta:
si ha che per qualunque raggio , occorrono infinite palle per ricoprire il piano, in quanto ogni punto dista 1 da tutti gli altri punti. Esistono tuttavia molti casi in cui le due nozioni coincidono, ad esempio uno spazio euclideo è totalmente limitato se e solo se è limitato.
Uno spazio metrico è compatto se e solo se è completo e totalmente limitato. Questa proprietà è una estensione del teorema di Heine-Borel, che caratterizza gli spazi euclidei compatti. È inoltre possibile dimostrare che uno spazio è totalmente limitato se e solo se lo è il suo completamento; sugli spazi euclidei questo equivale a dire che uno spazio è limitato se e solo se lo è la sua chiusura. Dalle due precedenti proprietà segue che uno spazio è totalmente limitato se e solo se il suo completamento è compatto: quest'ultima caratterizzazione può venire considerata come definizione di spazio totalmente limitato.
La definizione sopra data può essere estesa anche a spazi non dotati di una distanza, ma di una più generica struttura di spazio topologico.
Un sottoinsieme di uno spazio vettoriale topologico o un gruppo abeliano topologico è detto totalmente limitato se, per ogni intorno dell'elemento neutro , esiste un ricoprimento finito formato da traslazioni di sottoinsiemi di . Definire l'intorno equivale a fissare la "dimensione" degli insiemi che formano il ricoprimento, "dimensione" che non è alterata traslando l'insieme stesso. In simboli si può scrivere:
Se non è abeliano, è possibile definire due nozioni separate di spazio totalmente limitato a sinistra o a destra, sostituendo nella definizione sopra rispettivamente con le traslazioni sinistre e destre e .
Infine è possibile estendere la definizione per qualunque struttura che possieda la definizione di compattezza e completezza, usando la caratterizzazione definita nel paragrafo precedente e definendo pertanto gli spazi totalmente limitati come spazi il cui completamento è compatto. Se vale l'assioma della scelta, questa definizione è anche equivalente a quella di spazio precompatto.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.