Timeline
Chat
Prospettiva

Rompicapo delle otto regine

Da Wikipedia, l'enciclopedia libera

Rompicapo delle otto regine
Remove ads
Remove ads

Il rompicapo (o problema) delle otto regine è un problema che consiste nel trovare il modo di posizionare otto donne (pezzo degli scacchi) su una scacchiera 8×8 tali che nessuna di esse possa catturarne un'altra, usando i movimenti standard della regina. Perciò, una soluzione dovrà prevedere che nessuna regina abbia una colonna, traversa o diagonale in comune con un'altra regina. Il problema delle otto regine è un esempio del più generale problema delle n regine, che consiste nel piazzare, con le condizioni illustrate precedentemente, n regine su una scacchiera n × n; in questa forma, in particolare, esso viene spesso usato per illustrare tecniche di progettazione di algoritmi e di programmazione. È stato dimostrato matematicamente che il problema è risolvibile per n = 1 o n ≥ 4, mentre non lo è per n = 2 e n = 3.

abcdefgh
8
Thumb
d8 donna del bianco
g7 donna del bianco
c6 donna del bianco
h5 donna del bianco
b4 donna del bianco
e3 donna del bianco
a2 donna del bianco
f1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Una possibile soluzione del problema.
Remove ads

Storia

Il problema venne originariamente proposto nel 1848 dal giocatore di scacchi Max Bezzel, e negli anni molti matematici, incluso Gauss, che riuscì a trovare 72 delle 92 soluzioni, hanno lavorato al problema e alla sua forma generalizzata. La prima soluzione fu data da Franz Nauck nel 1850. Fu Nauck poi ad estendere il problema alla sua forma generalizzata. Nel 1874, S. Günther propose un metodo per trovare le soluzioni del problema utilizzando i determinanti, metodo che venne perfezionato poi da J.W.L. Glaisher.

Edsger Dijkstra, nel 1972, usò il problema delle n regine per illustrare il potere di ciò che egli chiamò programmazione strutturata. Pubblicò una descrizione assai dettagliata dello sviluppo di un algoritmo backtracking DFS.

Remove ads

Tutte le soluzioni

Le 92 soluzioni si riducono essenzialmente a 12 non ottenibili l'una dall'altra tramite rotazioni e riflessioni:

abcdefgh
8
Thumb
d8 donna del bianco
g7 donna del bianco
c6 donna del bianco
h5 donna del bianco
b4 donna del bianco
e3 donna del bianco
a2 donna del bianco
f1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 1
abcdefgh
8
Thumb
e8 donna del bianco
b7 donna del bianco
d6 donna del bianco
g5 donna del bianco
c4 donna del bianco
h3 donna del bianco
f2 donna del bianco
a1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 2
abcdefgh
8
Thumb
d8 donna del bianco
b7 donna del bianco
g6 donna del bianco
c5 donna del bianco
f4 donna del bianco
h3 donna del bianco
e2 donna del bianco
a1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 3
abcdefgh
8
Thumb
d8 donna del bianco
f7 donna del bianco
h6 donna del bianco
c5 donna del bianco
a4 donna del bianco
g3 donna del bianco
e2 donna del bianco
b1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 4
abcdefgh
8
Thumb
c8 donna del bianco
f7 donna del bianco
h6 donna del bianco
a5 donna del bianco
d4 donna del bianco
g3 donna del bianco
e2 donna del bianco
b1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 5
abcdefgh
8
Thumb
e8 donna del bianco
c7 donna del bianco
h6 donna del bianco
d5 donna del bianco
g4 donna del bianco
a3 donna del bianco
f2 donna del bianco
b1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 6
abcdefgh
8
Thumb
e8 donna del bianco
g7 donna del bianco
d6 donna del bianco
a5 donna del bianco
c4 donna del bianco
h3 donna del bianco
f2 donna del bianco
b1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 7
abcdefgh
8
Thumb
d8 donna del bianco
a7 donna del bianco
e6 donna del bianco
h5 donna del bianco
f4 donna del bianco
c3 donna del bianco
g2 donna del bianco
b1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 8
abcdefgh
8
Thumb
c8 donna del bianco
f7 donna del bianco
d6 donna del bianco
a5 donna del bianco
h4 donna del bianco
e3 donna del bianco
g2 donna del bianco
b1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 9
abcdefgh
8
Thumb
f8 donna del bianco
b7 donna del bianco
g6 donna del bianco
a5 donna del bianco
d4 donna del bianco
h3 donna del bianco
e2 donna del bianco
c1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 10
abcdefgh
8
Thumb
d8 donna del bianco
g7 donna del bianco
a6 donna del bianco
h5 donna del bianco
e4 donna del bianco
b3 donna del bianco
f2 donna del bianco
c1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 11
abcdefgh
8
Thumb
f8 donna del bianco
d7 donna del bianco
g6 donna del bianco
a5 donna del bianco
h4 donna del bianco
b3 donna del bianco
e2 donna del bianco
c1 donna del bianco
8
77
66
55
44
33
22
11
abcdefgh
Soluzione unica 12
Remove ads

Numero delle soluzioni

La tabella seguente mostra il numero di soluzioni del problema delle n regine, sia uniche[1] che distinte[2], per n = 1–14, 24–27.

Ulteriori informazioni n:, … ...

Notare che il problema delle sei regine ha meno soluzioni del problema delle cinque regine.

Non esiste ancora una formula per calcolare l'esatto numero di soluzioni.

Versione animata della soluzione ricorsiva

Thumb

Questa animazione usa il backtracking per risolvere il problema. Una regina è posizionata in una colonna che non genera conflitto. Se la colonna non viene trovata il programma ritorna all'ultimo stato positivo e viene provata una differente colonna.

Note

Loading content...

Bibliografia

Altri progetti

Loading content...

Collegamenti esterni

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads