Lemma di Yoneda

Da Wikipedia, l'enciclopedia libera

In matematica, il lemma di Yoneda è un risultato fondamentale nella teoria delle categorie. Nella sua forma più debole afferma che ogni categoria può essere considerata come una sottocategoria dei funtori contravarianti da essa alla categoria degli insiemi.[1]

Definizioni

Sia una categoria, e sia la categoria degli insiemi. La categoria di prefasci su a valori in è la categoria di funtori contravarianti da agli insiemi. Dati due funtori l'insieme di morfismi da a è l'insieme di trasformazioni naturali da a .

Fissato un oggetto , di particolare rilievo è il funtore

che mappa un oggetto all'insieme . Per ogni morfismo il funtore associa un morfismo al morfismo dato da .

Enunciato

Riepilogo
Prospettiva

Il lemma di Yoneda asserisce il fatto seguente:

Vi è una corrispondenza biunivoca .

Un caso particolare è quello dove ; in tal caso, il lemma di Yoneda afferma che la categoria è una sottocategoria di tramite il funtore .

Dimostrazione

La dimostrazione del lemma di Yoneda è contenuta nel seguente diagramma commutativo:

Thumb
Proof of Yoneda's lemma

Note

Wikiwand - on

Seamless Wikipedia browsing. On steroids.