Loading AI tools
Da Wikipedia, l'enciclopedia libera
In teoria delle probabilità la distribuzione di Bernoulli (o bernoulliana) è una distribuzione di probabilità su due soli valori: e ,[1] detti anche fallimento e successo. Prende il nome dallo scienziato svizzero Jakob Bernoulli (1654-1705).
Distribuzione di Bernoulli | |
---|---|
Funzione di distribuzione discreta Tre esempi di distribuzioni di Bernoulli:
e e e | |
Funzione di ripartizione | |
Parametri | |
Supporto | |
Funzione di densità | |
Funzione di ripartizione | |
Valore atteso | |
Varianza | |
Indice di asimmetria | |
Curtosi | |
Entropia | |
Funzione generatrice dei momenti | |
Funzione caratteristica | |
Una variabile aleatoria discreta ha distribuzione di Bernoulli di parametro se e solo se
ossia
Il valore atteso è
e la varianza è
Un processo di Bernoulli è una successione di variabili aleatorie indipendenti di uguale distribuzione di Bernoulli , dette prove di Bernoulli. Da tale processo si possono definire le seguenti ulteriori leggi. La distribuzione binomiale descrive la probabilità del numero di successi in prove di Bernoulli, ovvero della variabile aleatoria
La distribuzione geometrica e più in generale la distribuzione di Pascal descrivono il tempo del primo e del -esimo successo rispettivamente, ovvero le variabili aleatorie e definite come
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.