Distribuzione Beta

distribuzione di probabilità Da Wikipedia, l'enciclopedia libera

Distribuzione Beta

In teoria delle probabilità e in statistica, la distribuzione (Beta) è una distribuzione di probabilità continua definita da due parametri e sull'intervallo unitario .

Fatti in breve B ( α , β ) {\displaystyle \mathrm {B} (\alpha ,\beta )}, Parametri ...
Distribuzione
Funzione di densità di probabilità
Thumb
Funzione di ripartizione
Thumb
Parametri
Supporto
Funzione di densità
Funzione di ripartizione
(funzione Beta incompleta regolarizzata)
Valore atteso
Moda se


se e
se e

Varianza
Indice di asimmetria
Funzione generatrice dei momenti
Funzione caratteristica
Chiudi

Questa distribuzione nasce in modo molto naturale nella inferenza bayesiana, perché governa la probabilità di un processo di Bernoulli a posteriori dell'osservazione di "successi" e "fallimenti", quando è a priori distribuita uniformemente tra e .

Definizione

Riepilogo
Prospettiva

La distribuzione Beta di parametri (entrambi positivi) è definita sull'intervallo con funzione di densità di probabilità

.

In altri termini la funzione di densità di probabilità è proporzionale alla funzione

,

riscalata per un fattore dato dalla funzione Beta

;

in questo modo ha probabilità totale .

La sua funzione di ripartizione è la funzione Beta incompleta regolarizzata

.

Caratteristiche

I momenti semplici di una variabile aleatoria con distribuzione Beta di parametri sono

,

dove indica il fattoriale crescente con k fattori, . (L'ultima uguaglianza può essere dedotta dall'espressione della funzione Beta attraverso la funzione Gamma, e dalla proprietà .)

I momenti semplici soddisfano quindi la relazione ricorsiva

.

In particolare, la distribuzione ha:

  • valore atteso ;
  • varianza ;
  • indice di asimmetria ;
  • indice di curtosi .

Invertendo le relazioni qui sopra, che forniscono il valore atteso e la varianza in funzione dei parametri e , possiamo esprimere univocamente i suddetti parametri in termini del valore atteso e della varianza:

;
.

Queste formule vengono applicate nel metodo dei momenti, con la media e la varianza osservate su un campione.

L'entropia è

,

dove è la funzione digamma.

La moda della distribuzione dipende dai segni di e , ed è unica solo se almeno uno dei due è positivo:

se e allora la moda è ;
se (o ) e allora la moda è 1;
se (o ) e allora la moda è 0.

(La funzione di densità di probabilità ha un asintoto in 0 se , in 1 se .)

Relazioni con altre distribuzioni

Una distribuzione Beta può essere definita su un qualunque intervallo , costruendo una nuova variabile casuale .

Se segue la distribuzione Beta di parametri allora segue la distribuzione Beta di parametri .

  • La distribuzione di Dirichlet è una generalizzazione della distribuzione Beta: essa descrive la distribuzione a posteriori dei parametri di una distribuzione multinomiale a posteriori, appunto, di un'osservazione. La distribuzione di Dirichlet con due parametri è esattamente la distribuzione Beta.
  • Per la densità di probabilità del tipo Beta è, in termini geometrici, la metà superiore di una circonferenza: , descrive un semicerchio. La variabile aleatoria segue una distribuzione di Wigner di parametro r.
  • Se e sono due variabili aleatorie indipendenti con distribuzioni Gamma di rispettivi parametri e , allora la variabile aleatoria segue la distribuzione Beta di parametri .
  • Se la variabile aleatoria segue la distribuzione Beta di parametri allora la variabile aleatoria è descritta dalla distribuzione Beta del secondo tipo, che ha funzione di densità di probabilità
  • La distribuzione di Wilks può essere interpretata come la distribuzione che governa il prodotto di n variabili aleatorie indipendenti con rispettivi parametri .
  • Se è una variabile aleatoria con distribuzione di Kumaraswamy di parametri allora segue la distribuzione Beta di parametri .

Inferenza bayesiana

Riepilogo
Prospettiva

La distribuzione Beta e il processo di Bernoulli

E' immediato dimostrare che, se X è distribuita come una v.c. binomiale con parametri n e π

e il parametro π è distribuito a priori come una v.c. Beta con i parametri a e b

allora il parametro π è distribuito a posteriori, anch'esso, come una v.c. Beta, ma con parametri a+x e b+n-x

Come detto in precedenza, qualora il parametro π sia distribuito a priori come una variabile casuale rettangolare nell'intervallo [0;1] (ovvero ipotizzando a priori tutti i possibili valori di π equiprobabili), e pertanto a=1 e b=1, allora la distribuzione a posteriori del parametro π è una Beta con parametri x+1 e n-x+1

essa ha come valore modale p

, che corrisponde alla stima usata in ambito frequentistico, mentre il valore atteso o media, è
, che per x<n/2 è maggiore del valore modale . Il valore atteso minimizza lo scarto quadratico.

Infatti, la probabilità di ottenere successi e fallimenti in un processo di Bernoulli di parametro p è , proporzionale alla densità della distribuzione Beta di parametri .

Pertanto, come detto sopra, se la variabile aleatoria segue una distribuzione binomiale con parametro aleatorio P distribuito a priori uniformemente sull'intervallo unitario , a posteriori dell'osservazione il parametro P segue la distribuzione .

Più in generale, se è una variabile aleatoria con distribuzione binomiale e il parametro P segue a priori la distribuzione , allora a posteriori dell'osservazione il parametro P segue la distribuzione .

Il caso della distribuzione uniforme a priori è un caso particolare di quest'ultimo, essendo .

Priori coniugate e la v.c. binomiale negativa

Se X è distribuita come una v.c. binomiale negativa con parametri m e θ

e il parametro θ è distribuito a priori come una v.c. Beta con i parametri a e b

allora il parametro θ è distribuito a posteriori anch'esso come una v.c. Beta, ma con parametri a+m e b+x

Qualora la distribuzione a priori sia una variabile casuale rettangolare nell'intervallo [0;1] (ovvero ipotizzando a priori tutti i possibili valori di θ equiprobabili), e pertanto a=1 e b=1, allora la distribuzione a posteriori è una Beta con parametri m+1 e x+1

che ha come valore modale t

t=m/(m+x)

Similmente, se la variabile aleatoria segue la distribuzione di Pascal e P segue a priori la distribuzione , allora a posteriori dell'osservazione il parametro P segue la distribuzione .

Voci correlate

Altri progetti

Collegamenti esterni

Ulteriori informazioni Controllo di autorità ...
Chiudi
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.