Loading AI tools
composto chimico Da Wikipedia, l'enciclopedia libera
Il 2-metil-1-propanolo (o alcol isobutilico) è un alcol di formula (CH3)2CHCH2OH.
2-metil-1-propanolo | |
---|---|
Nome IUPAC | |
2-metilpropan-1-olo | |
Nomi alternativi | |
alcol isobutilico isobutanolo[1] | |
Caratteristiche generali | |
Formula bruta o molecolare | C4H10O |
Massa molecolare (u) | 74,12 |
Aspetto | liquido incolore |
Numero CAS | |
Numero EINECS | 201-148-0 |
PubChem | 6560 |
SMILES | CC(C)CO |
Proprietà chimico-fisiche | |
Densità (g/cm3, in c.s.) | 0,802 (20 °C) |
Solubilità in acqua | 80 g/L (20 °C) |
Temperatura di fusione | −108 °C (165 K) |
Temperatura di ebollizione | 108 °C (381 K) |
Indicazioni di sicurezza | |
Punto di fiamma | 28 °C (301 K) (c.c.) |
Limiti di esplosione | 1,6 - 12 Vol% |
Temperatura di autoignizione | 430 °C (703 K) |
Simboli di rischio chimico | |
pericolo | |
Frasi H | 226 - 335 - 315 - 318 - 336 |
Consigli P | 210 - 302+352 - 304+340 - 305+351+338 [2] |
A temperatura ambiente si presenta come un liquido incolore dall'odore alcolico. È un composto infiammabile, irritante.
Viene preparato per idroformilazione del propene a dare 2-metilpropanale, che viene successivamente purificata e idrogenata a 2-metil-1-propanolo.[3]
Escherichia coli, è un batterio Gram-negativo, a forma di bastoncello. L'E. coli è il microrganismo più studiato per la produzione commerciale di isobutanolo.[4][5] Nella sua forma ingegnerizzata, E. coli produce i più alti rendimenti di isobutanolo di qualsiasi altro microrganismo.[4] Per migliorare l'efficienza metabolica di E. coli sono stati usati diversi metodi che hanno portato alla produzione di quantità maggiori di isobutanolo.[6] E. coli è un bio-sintetizzatore di isobutanolo ideale perché è un organismo per il quale esistono diversi strumenti di manipolazione genetica, ed è un organismo per il quale esiste un vasto corpus di letteratura scientifica.[5] E. coli utilizza la lignocellulosa (scarto dell'agricoltura) per la sintesi dell'isobutanolo, fatto che consente di non utilizzare materiali vegetale destinati al consumo umano, aumentando la convenienza economica.[5][7]
Lo svantaggio principale di E. coli è che è suscettibile ai batteriofagi, fatto che può mettere a rischio il funzionamento dei bioreattori.[5] Inoltre, la produzione di isobutanolo in E. coli funziona in modo ottimale a una concentrazione limitata di isobutanolo nella cellula. Per ridurre la sensibilità di E. coli ad alte concentrazioni, vengono generati mutanti degli enzimi coinvolti nella sintesi attraverso sistemi di mutagenesi casuale.[8]
La biomassa cellulosica come le pannocchie è abbondante ed economica, ma è difficile da utilizzare a causa delle difese naturali della pianta, che gli impediscono di essere demolita chimicamente. Inoltre la produzione di biocarburanti comporta costosi trattamenti enzimatici e di fermentazione. Per rendere possibile la conversione, i ricercatori hanno sviluppato un ceppo di Clostridium cellulolyticum, un microbo che degrada la cellulosa, e potrebbe sintetizzare l'isobutanolo direttamente dalla cellulosa.
I cianobatteri sono un phylum dei batteri fotosintetici. I cianobatteri sono adatti per la biosintesi se vengono geneticamente modificati per produrre isobutanolo e le sue aldeidi corrispondenti.[9]
I cianobatteri offrono numerosi vantaggi come sintetizzatori di biocarburanti: crescono più velocemente delle piante[10] e assorbono anche la luce solare in modo più efficiente delle piante.[11] Ciò significa che possono essere reintegrati ad una velocità maggiore rispetto a quella utilizzata per altri sintetizzatori di biocarburanti. I cianobatteri possono essere coltivati su terreni non utilizzati per l'agricoltura.[10] Le fonti principali per farli crescere sono acqua e anidride carbonica.[11] L'anidride carbonica deriva dall'atmosfera, quindi i cianobatteri non hanno bisogno di materiale vegetale per sintetizzare l'isobutanolo, evitando la necessità di prelevare materiale vegetale da fonti alimentari e creare una competizione tra il prezzo di cibo e carburante.[10][11] I cianobatteri quindi possono essere anche utilizzati per il biorisanamento dell'atmosfera, eliminando l'anidride carbonica in eccesso.
Lo svantaggio principale è che durante la crescita i cianobatteri sono sensibili alle condizioni ambientali. Soffrono a concentrazioni inadatte di anidride carbonica, in condizioni di luce inadeguata, o in acque con salinità eccessiva, sebbene molti cianobatteri siano in grado di crescere nelle acque salmastre e marine. Questi fattori sono generalmente difficili da controllare e rappresentano un grosso ostacolo alla produzione di isobutanolo da cianobatteri.[12] I bioreattori a cianobatteri richiedono un'elevata energia per funzionare. Le culture richiedono una miscelazione costante e la raccolta dei prodotti biosintetici richiede un uso intensivo di energia. Ciò riduce l'efficienza della produzione di isobutanolo attraverso i cianobatteri.[12]
Il Bacillus subtilis è un batterio gram-positivo a forma di bastoncello che offre molti dei vantaggi e degli svantaggi di E. coli, ma è meno usato perché non produce isobutanolo in quantità simili all'E. coli.[5] Il Bacillus subtilis è in grado di produrre isobutanolo dalla lignocellulosa ed viene facilmente manipolato attraverso tecniche genetiche,[5] al fine di portare a maggiori rese di isobutanolo in produzione.[13]
Il Saccharomyces cerevisiae, è un lievito, che produce naturalmente isobutanolo in piccole quantità attraverso la viabiosintetica della valina.[14] Le S. cerevisiae possono essere coltivate a bassi livelli di pH, che aiuta a prevenire la contaminazione dei bioreattori.[5] S. cerevisiae non viene influenzata dai batteriofagi perché è un eucariota.[5] Per migliorare i rendimenti della sintesi di isobutanolo viene utilizzata la sovraespressione degli enzimi della via biosintetica della valina.[14][15] S. cerevisiae, tuttavia, è difficile da lavorare a causa della sua biologia: essendo un eucariota, è più complesso di E. coli e B. subtilis, ed è più difficile da manipolare geneticamente.[5] Inoltre S. cerevisiae produce anche etanolo, questa capacità può inibire la produzione di isobutanolo.[5] S. cerevisiae non può utilizzare zuccheri a cinque atomi di carbonio per produrre isobutanolo, ma utilizza materiale vegetale destinato al consumo umano.[5]
La Ralstonia eutropha è un batterio gram-negativo in grado di convertire l'energia elettrica in isobutanolo. Gli anodi sono posti in una miscela di acqua e anidride carbonica. La corrente elettrica viene fatta passare attraverso gli anodi dove l'acqua e l'anidride carbonica vengono combinati per sintetizzare l'acido formico. Una coltura di Ralstonia eutropha (composta da un ceppo tollerante all'elettricità) viene posta all'interno della miscela e converte l'acido formico in isobutanolo che viene separato dalla miscela e può essere usato come biocarburante. Questo metodo di produzione offre un modo per immagazzinare chimicamente l'energia prodotta da fonti sostenibili.[16]
Trova principalmente impiego come solvente e come composto intermedio nella sintesi di altre sostanze.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.