Loading AI tools
Da Wikipedia, l'enciclopedia libera
In geometria, si definisce trasformazione affine dello spazio euclideo qualunque composizione di una trasformazione lineare con una traslazione; in simboli, la più generale trasformazione affine può essere scritta come
dove è una trasformazione lineare e è una traslazione; esplicitamente, l'azione di è data da
dove è la matrice quadrata che rappresenta e il vettore che determina la traslazione.
Le trasformazioni affini sono le trasformazioni più generali che preservano i sottospazi affini. Tra queste, giocano un ruolo importante le affinità: queste sono le trasformazioni affini di uno spazio in sé stesso, che sono anche una corrispondenza biunivoca.
Esempi di affinità sono rotazioni, omotetie, traslazioni, rototraslazioni, riflessioni. Le affinità non sono necessariamente isometrie, non preservano cioè angoli e distanze, mentre mantengono sempre il parallelismo tra le rette.
Una trasformazione affine
fra due spazi euclidei è una trasformazione del tipo
dove è una matrice , è un vettore di fissato e si fa uso del prodotto fra una matrice e un vettore.
Una trasformazione affine fra due spazi vettoriali e più generali è la composizione di una trasformazione lineare
con una traslazione
determinata da un vettore fissato di .
Una trasformazione affine fra due spazi affini e è una funzione
per cui esiste una funzione lineare
fra i due spazi vettoriali associati a e tale che
Ciascuna definizione generalizza la precedente: l'ultima definizione è quindi la più generale e non dipende da un fissato riferimento affine. D'altra parte, fissati due riferimenti per gli spazi affini e , una trasformazione affine è comunque esprimibile come
come nella prima definizione.
Una affinità è una trasformazione affine biiettiva in cui dominio e codominio coincidono.
Alcuni autori, nella definizione di trasformazione affine, richiedono che questa sia iniettiva.
Nella notazione
Il vettore corrisponde all'immagine dell'origine
Una trasformazione lineare è una trasformazione affine che non sposta l'origine: in altre parole, una trasformazione affine con .
Tra le trasformazioni lineari vi sono molte affinità, quali le rotazioni intorno all'origine e le riflessioni rispetto a sottospazi che passano per l'origine. Ad esempio, la rotazione di angolo nel piano cartesiano è del tipo
D'altro canto, una affinità dove è la matrice identità è una traslazione
Una traslazione, a differenza di una trasformazione lineare, non ha mai un punto fisso.
Ogni affinità è composizione di una trasformazione lineare e di una traslazione. Ne è un esempio la rototraslazione nello spazio tridimensionale, ottenuta componendo una rotazione di angolo lungo un asse con una traslazione di passo lungo il medesimo. Ad esempio, se l'asse è quello delle la rototraslazione ha la forma
Una affinità
è determinata da una matrice quadrata e da un vettore . Per utilizzare gli strumenti dell'algebra lineare è però utile rappresentare una affinità con una matrice sola: per fare questo si aggiunge un valore fittizio "1" in fondo al vettore e si rappresenta la trasformazione nel modo seguente
La matrice associata all'affinità con queste notazioni è quindi
In questo modo, la composizione di due trasformazioni affini è rappresentata dal prodotto delle due matrici corrispondenti. La trasformazione identità è rappresentata dalla matrice identità.
Per essere invertibile, il determinante deve essere diverso da zero. La matrice inversa, che rappresenta la trasformazione inversa, è la seguente
Con questa notazione, le trasformazioni affini di risultano essere un sottogruppo del gruppo generale lineare
delle matrici invertibili a coefficienti nel campo .
Una affinità è rappresentata da una matrice quadrata . Se non ha 1 fra i suoi autovalori, l'affinità ha sempre un punto fisso. Infatti l'equazione può essere riscritta come:
Poiché 1 non è autovalore di , il nucleo di ha dimensione zero e quindi è suriettiva, ovvero la matrice è invertibile ed esiste un che soddisfa l'equazione. Questo è dato da:
Le traslazioni non hanno punti fissi: infatti per queste ha l'autovalore 1.
Data l'affinità si dice punto unito ogni punto tale che e retta unita ogni retta tale che .
Una affinità di uno spazio affine manda punti affinemente indipendenti in punti affinemente indipendenti.
Se lo spazio affine ha dimensione e
sono due insiemi di punti affinemente indipendenti, esiste un'unica affinità di che manda i primi nei secondi, cioè tale che per ogni .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.