Loading AI tools
enzima Da Wikipedia, l'enciclopedia libera
L'enzima superossido dismutasi (SOD), che appartiene alla classe delle ossidoreduttasi, catalizza la seguente reazione:
superossido dismutasi | |
---|---|
Struttura di un'unità funzionale (tetramerica) di superossido dismutasi 2 umana | |
Numero EC | 1.15.1.1 |
Classe | Ossidoreduttasi |
Nome sistematico | |
superossido:superossido ossidoreduttasi | |
Altri nomi | |
rame-zinco superossido dismutasi; Cu-Zn SOD; Mn-SOD; Fe-SOD; SOD-1; SOD-2; SOD-3; SOD-4; cupreina; emocupreina; eritrocupreina; citocupreina; epatocupreina | |
Banche dati | BRENDA, EXPASY, GTD, PDB (RCSB PDB PDBe PDBj PDBsum) |
Fonte: IUBMB | |
Si tratta quindi di un importante antiossidante in quasi tutte le cellule esposte all'ossigeno. Una delle estremamente rare eccezioni è costituita dal Lactobacillus plantarum e relativi lactobacilli, che usano un meccanismo diverso.
La dismutazione catalizzata dalla SOD può essere scritta con le seguenti semireazioni:
dove = Cu (n=1); Mn (n=2); Fe (n=2); Ni (n=2).
In questa reazione lo stato di ossidazione del catione metallico oscilla tra n e n+1.
Riassumendo, le Superossido dismutasi (SOD) sono una classe di enzimi metallici e di catalizzatori chimici che favoriscono la dissociazione dell’anione superossido in ossigeno molecolare e in perossido di idrogeno, mediante reazioni di ossido-riduzione che coinvolgono lo ione metallo del sito attivo.[1]
Esistono molte forme comuni di SOD: sono proteine che possono avere cofattori metallici diversi, come rame e zinco, o manganese, ferro, o nichel (l'ultimo non nelle cellule eucariote).
Nell'uomo, sono presenti tre forme di superossido dismutasi. La SOD1 si trova nel citoplasma, la SOD2 nei mitocondri mentre la SOD3 è extracellulare. La prima è un dimero (consiste di due unità), mentre le altre sono tetrameri (quattro subunità). La SOD1 e la SOD3 contengono rame e zinco, mentre la SOD2 ha il manganese nel suo centro di reazione. I geni sono collocati nei cromosomi 21, 6 e 4, rispettivamente (21q22.1, 6q25.3 e 4p15.3-p15.1).
L'anione superossido radicale (O2-) dismuta spontaneamente in O2 e H2O2 abbastanza rapidamente (~105 M−1 s−1 a pH 7). Inoltre, così come il perossido, può reagire più rapidamente in presenza di gruppi come il monossido di azoto (NO), con cui tende a formare il perossinitrito (un radicale altamente reattivo in grado di uccidere i microbi all'interno del fagolisosoma). La dismutazione attraverso la SOD, invece, è più veloce perché la SOD ha il più rapido numero di turnover o kcat (numero di molecole di substrato convertite per secondo) di ogni altro enzima conosciuto (~109 M−1 s−1), essendo la reazione limitata solo dalla frequenza di collisione tra la stessa e il superossido. La SOD in questo modo protegge la cellula dalla tossicità dell'anione superossido.
Il superossido è uno dei maggiori agenti ossidanti nella cellula e di conseguenza, la SOD ha un ruolo antiossidante chiave. L'importanza fisiologica delle SOD è visualizzabile dalle gravi patologie evidenti nei topi modificati geneticamente per mancare di questi enzimi. I topi mancanti della SOD2 muoiono pochi giorni dopo la nascita, a causa del forte stress ossidativo.[2] Quelli cui manca la SOD1 sviluppano una gran varietà di patologie, tra cui il carcinoma epatocellulare[3], un'accelerazione della perdita di massa muscolare legata all'età[4], un'incidenza precoce della cataratta ed una speranza di vita minore. Quelli che mancano della SOD3 non mostrano nessun difetto evidente ed hanno una normale aspettativa di vita[5].
Mutazioni nel primo enzima SOD (SOD1) sono state collegate alla Sclerosi laterale amiotrofica familiare (ALS, una forma di malattia dei motoneuroni). Gli altri due tipo non sono stati collegati ad alcuna malattia umana; comunque nel topo l'inattivazione di SOD2 è causa di mortalità prenatale[2] e l'inattivazione di SOD1 provoca epatocarcinoma[6]. Mutazioni di SOD1 possono causare ALS familiare tramite un meccanismo che al momento ancora non si conosce, ma che non è dovuto alla perdita dell'attività enzimatica.
La SOD viene usata nei prodotti cosmetici per ridurre il danno da radicali liberi sulla pelle, per esempio per ridurre una fibrosi dovuta alle radiazioni in caso di cancro al seno. Gli studi sul suo impiego cosmetico devono essere comunque giudicati come tentativi, poiché non ci sono stati controlli adeguati durante lo svolgimento, compresa una mancanza di randomizzazione, del doppio cieco o del placebo.[7]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.