Remove ads
proprietà posseduta da un oggetto la cui immagine riflessa non può essere ottenuta dall'oggetto tramite traslazioni e rotazioni Da Wikipedia, l'enciclopedia libera
In matematica, un oggetto geometrico è chirale se è differente dalla sua immagine riflessa. Più precisamente, per "differente" si intende che non è possibile sovrapporre l'immagine riflessa con l'oggetto originario tramite traslazioni e rotazioni.
Il concetto di chiralità si applica alle figure geometriche piane e spaziali. Si applica anche a concetti elaborati più recentemente dalla matematica moderna, come i nodi o le varietà.
La riflessione è spesso anche chiamata enantiomorfismo, e due oggetti ottenuti l'uno dall'altro tramite riflessione sono detti enantiomorfi. Un oggetto chirale, assieme alla sua immagine riflessa, forma una coppia enantiomorfa.
Un poligono è chirale se e solo se non ha un asse di simmetria. Quindi i poligoni regolari non sono chirali, e neppure i triangoli isosceli. D'altra parte, i triangoli scaleni sono tutti chirali.
I solidi platonici non sono chirali: ciascuno di questi ammette numerose simmetrie e metà di queste sono riflessioni. Fra i solidi archimedei vi sono però due esempi di poliedri chirali, il cubo simo e il dodecaedro camuso. Il cubo simo e la sua immagine riflessa formano quindi una coppia enantiomorfa, descritta qui sotto:
La chiralità è una proprietà che viene preservata per dualità. Quindi i solidi di Catalan duali di due solidi archimedei chirali sono anch'essi chirali.
La chiralità è un concetto molto importante anche in teoria dei nodi. Il nodo a trifoglio è un nodo chirale, mentre il nodo a otto non lo è.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.