Loading AI tools
Dari Wikipedia, ensiklopedia bebas
Titik kritis adalah istilah umum yang digunakan dalam banyak cabang matematika.
Ketika berhadapan dengan fungsi dari variabel real, titik kritis adalah titik dalam domain fungsi di mana fungsi tersebut tidak dapat didiferensialkan atau nilai turunannya sama dengan nol.[1] Ketika berurusan dengan variabel kompleks, titik kritis adalah, sama halnya, titik dalam domain fungsi yang mengakibatkan fungsi tersebut tidak holomorfik atau turunannya sama dengan nol.[2][3] Demikian juga, untuk fungsi dari beberapa variabel real, titik kritis adalah nilai dalam domainnya sehingga gradiennya tidak terdefinisi atau sama dengan nol.[4]
Nilai fungsi pada titik kritis disebut dengan nilai kritis.
Definisi semacam ini dapat diperumum ke peta terdiferensialkan antara dan . Sebuah titik kritis, dalam hal ini, adalah sebuah titik yang mengakibatkan rank dari matriks Jacobi tidak maksimum. Definisi ini juga dapat diperumum lebih jauh ke peta terdiferensialkan antara lipatan-lipatan terdiferensialkan, sebagai titik-titik yang mengakibatkan rank dari matriks Jacobi berkurang. Dalam hal ini, titik-titik kritis juga disebut titik bifurkasi.
Sebuah titik kritis dari sebuah fungsi variabel satu variabel real, , adalah sebuah nilai dalam domain yang mengakibatkan tidak terdiferensialkan atau turunannya adalah 0 ().[1] Nilai kritis adalah nilai fungsi di sebuah titik kritis. Konsep-konsep ini dapat divisualisasikan melalui grafik fungsi : pada titik kritis, grafik akan memiliki garis singgung horisontal. Untuk fungsi terdiferensialkan, titik kritis sama dengan titik stasioner.
Meskipun mudah divisualisasikan dengan grafik (yang merupakan sebuah kurva), pengertian titik kritis dari fungsi tidak dapat disamakan dengan pengertian titik kritis dari kurva (lihat bagian di bawah ini untuk definisi yang lebih rinci). Jika adalah fungsi dua variabel yang terdiferensialkan, maka adalah persamaan implisit dari sebuah kurva. Titik kritis dari kurva seperti itu, untuk proyeksi yang sejajar dengan sumbu-y (pemetaan ), adalah titik pada kurva yang memenuhi Hal ini mengartikan bahwa garis singgung kurva akan sejajar dengan sumbu-y, dan bahwa pada titik ini, tidak mendefinisikan fungsi implisit dari ke (lihat teorema fungsi implisit). Jika adalah titik kritis, maka adalah nilai kritisnya. Titik kritis seperti itu juga disebut titik bifurkasi, karena secara umum, ketika nilai berubah disekitar nilai kritis, akan ada dua cabang kurva di sisi dan nol di sisi lainnya.
Dari definisi-definisi ini dapat disimpulkan bahwa fungsi terdiferensialkan memiliki titik kritis dengan nilai kritis , jika dan hanya jika adalah titik kritis dari grafik untuk proyeksi yang sejajar dengan sumbu-x. Jika tidak dapat didiferensialkan di karena garis singgung menjadi sejajar dengan sumbu-y, maka masih merupakan titik kritis , namun dalam kasus ini adalah titik kritis dari grafik fungsi untuk proyeksi yang sejajar dengan sumbu-y. Sebagai contoh, titik kritis dari lingkaran satuan persamaan adalah dan untuk proyeksi sejajar dengan sumbu-x, dan (1, 0) dan (-1, 0) untuk arah sejajar dengan sumbu-y. Jika seseorang menganggap setengah lingkaran atas sebagai grafik fungsi
maka adalah titik kritis dengan nilai kritis 1 karena turunannya sama dengan 0, dan dan adalah titik kritis dengan nilai kritis 0 karena turunannya tidak terdefinisi.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.