Loading AI tools
Teknik analisis kimia cabang kromatografi Dari Wikipedia, ensiklopedia bebas
Kromatografi gas (KG) merupakan jenis kromatografi yang umum digunakan dalam analisis kimia untuk pemisahan dan analisis senyawa yang dapat menguap tanpa mengalami dekomposisi. Penggunaan umum KG mencakup pengujian kemurnian senyawa tertentu, atau pemisahan komponen berbeda dalam suatu campuran (kadar relatif komponen tersebut dapat pula ditentukan). Dalam beberapa kondisi, KG dapat membantu mengidentifikasi senyawa. Dalam kromatografi preparatif, KG dapat digunakan untuk menyiapkan senyawa murni dari suatu campuran.[1][2]
Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. |
Dalam kromatografi gas, fasa gerak berupa gas pembawa, biasanya gas inert seperti helium atau gas yang tidak reaktif seperti nitrogen. Fasa diam berupa lapisan cairan mikroskopik atau polimer di atas padatan pendukung fasa diam, yang berada di dalam tabung kaca atau logam yang disebut kolom. Instrumen yang digunakan untuk melakukan kromatografi gas disebut dengan gas kromatograf (atau "aerograf" atau "pemisah gas").
Senyawa dalam fasa gas yang dianalisis berinteraksi dengan dinding kolom, yang dilapisi dengan fasa diam. Hal ini menyebabkan masing-masing senyawa mengalami elusi pada waktu yang berbeda, dan ini dikenal sebagai waktu retensi senyawa. Perbandingan waktu retensi merupakan keluaran dari KG yang dapat dianalisis.
Secara prinsip, kromatografi gas sama dengan kromatografi kolom (sama juga dengan kromatografi jenis lain seperti KCKT, KLT), tetapi terdapat beberapa perbedaan yang perlu dicatat. Pertama, proses pemisahan campuran terjadi antara fasa diam cairan dan fasa gerak gas, sementara dalam kromatografi kolom, fasa diam adalah padat dan fasa gerak berupa cairan. (Oleh karena itu, sebutan lengkap prosedur ini adalah "Kromatografi gas–cair", yang merujuk pada fasa gerak dan fasa diam.) Kedua, kolom yang dilalui fasa gas terletak di dalam oven dengan temperatur gas yang dapat dikendalikan, sementara kromatografi kolom (biasanya) tidak dilengkapi pengendali temperatur. Terakhir, konsentrasi senyawa dalam fasa gas murni merupakan fungsi dari tekanan uap gas.[1]
Kromatografi gas juga mirip dengan distilasi fraksi, karena keduanya melakukan proses pemisahan komponen campuran berdasarkan perbedaan titik didih (atau tekanan uap). Meski demikian, distilasi fraksi biasanya digunakan untuk memisahkan komponen campuran dalam skala besar, sementara KG hanya dapat digunakan untuk skala yang jauh lebih kecil (skala mikro).[1]
Kromatografi gas kadang dikenal sebagai kromatografi fasa uap (KFU) (en: vapour-phase chromatography, VPC), atau kromatografi partisi gas–cair (KPGC) (en: gas–liquid partition chromatography, GLPC). Nama alternatif ini, begitu pula singkatannya, sering digunakan dalam literatur saintifik. Sejujurnya, KPGC adalah terminologi yang paling tepat, dan oleh karenanya banyak digunakan oleh para penulis sains.[1]
Kromatografi pertama kali dilakukan tahun 1903 oleh ilmuwan Rusia, Mikhail Semenovich Tswett. Ilmuwan Jerman Fritz Prior mengembangkan kromatografi fasa padat pada tahun 1947. Archer John Porter Martin, yang memenangkan hadiah Nobel untuk penelitiannya mengembangkan kromatografi cair–cair (1941) dan kromatografi kertas (1944), memberikan dasar pengembangan kromatografi gas dan dia kemudian memproduksi kromatografi gas–cair (1950). Erika Cremer memperkuat dasar yang telah dikembangkan oleh Fritz Prior.
Kromatograf gas adalah instrumen analisis kimia untuk pemisahan bahan kimia dalam suatu sampel kompleks. Kromatograf gas menggunakan tabung pendek beraliran yang dikenal sebagai kolom, yang di dalamnya dialirkan gas (gas pembawa, fasa gerak) sambil membawa konstituen sampel yang mengalir dengan laju yang berbeda bergantung pada sifat fisika dan kimia komponen sampel tersebut serta interaksi spesifik dengan pengisi kolom yaitu fasa diam. Setelah sampel keluar di ujung kolom, hasil pemisahan dideteksi dan diidentifikasi secara elektronik. Fungsi fasa diam di dalam kolom untuk memisahkan komponen yang berbeda, mengakibatkan masing-masing keluar dari kolom pada saat yang berbeda (waktu retensi). Parameter lain yang dapat digunakan untuk mengubah urutan atau waktu retensi adalah laju aliran gas pembawa, panjang kolom dan temperatur.
Dalam analisis KG, sejumlah volume gas atau cairan analit yang diketahui diinjeksikan ke dalam lubang masuk kolom, biasanya menggunakan microsyringe (atau serat mikroekstraksi fasa padat, atau sistem pengalih sumber gas). Saat gas pembawa membawa molekul analit melalui kolom, pergerakan ini dihambat oleh adsorpsi molekul analit pada dinding kolom atau bahan yang terikat dalam kolom. Laju progres molekul sepanjang kolom bergantung pada kekuatan adsorpsi, yang pada gilirannya bergantung pada jenis molekul dan bahan fasa diam. Oleh karena masing-masing jenis molekul mempunyai laju progresi yang berbeda, berbagai komponen campuran analit terpisah sesuai progres sepanjang kolom dan mencapai ujung kolom pada waktu yang berbeda (waktu retensi). Sebuah detektor digunakan untuk memantau aliran outlet dari kolom; sehingga, waktu komponen mencapai outlet, jumlah komponen dapat ditentukan. Umumnya, bahan diidentifikasi (secara kualitatif) berdasarkan urutan waktu elusi dari kolom dan waktu retensi analit di dalam kolom.
Autosampler menyediakan cara yang efektif untuk memasukkan sampel secara otomatis ke dalam inlet. Dimungkinkan untuk insersi manual sampel, tetapi tidak lagi umum. Insersi otomatis menghasilkan reprodusibilitas dan optimasi waktu yang lebih baik.
Terdapat berbafgai jenis autosampler. Autosampler dapat dikelompokkan dalam hubungannya dengan kapasitas sampel (auto-injektor vs autosampler), teknologi robotik (XYZ robot vs. rotating robot – yang paling umum), atau analisisnya.
Pada umumnya, produsen autosampler berbeda dengan produsen KG dan saat ini tidak ada produsen KG yang menawarkan sejumlah model autosampler lengkap. Dalam sejarahnya, negara-negara yang aktif dalam autosampler adalah: Amerika Serikat, Italia, Swiss, dan Inggris Raya.
Inlet kolom (atau injektor) berfungsi untuk mengintroduksi sampel ke dalam aliran kontinu gas pembawa. Inlet adalah perangkat keras yang melekat pada pangkal kolom.
Jenis-jenis inlet yang umum adalah:
Pemilihan gas pembawa (fasa gerak) adalah hal penting. Hidrogen mempunyai rentang laju aliran yang sebanding dengan helium dalam hal efisiensi. Namun, helium lebih efisien dan menghasilkan pemisahan terbaik jika laju aliran dioptimalkan. Helium bersifat tidak terbakar dan dapat bekerja dengan banyak detektor maupun instrumen lawas. Oleh karena itu, helium menjadi gas pembawa yang paling umum digunakan. Meski demikian, harga helium telah naik sangat banyak beberapa tahun terakhir ini, menyebabkan peningkatan jumlah kromatografiwan/wati yang beralih ke gas hidrogen. Pengalaman historis lebih merupakan alasan utama, bukan alasan rasional, beberapa orang mempertahankan penggunaan helium.
Detektor yang paling banyak digunakan adalah detektor ionisasi nyala (En: Flame Ionisation Detector, FID) dan detektor konduktivitas termal (En: Thermal Conductivity Detector, TCD). Keduanya sensitif untuk hampir semua komponen, dan keduanya bekerja pada rentang konsentrasi yang lebar. Sementara TCD adalah detektor universal dan dapat digunakan untuk mendeteksi komponen apapun selain gas pembawa (selama konduktivitas termalnya berbeda dari gas pembawa pada temperatur detektor), FID peka terutama untuk hidrokarbon, dan kepekaannya melebihi TCD pada hidrokarbon. Meski demikian, FID tidak dapat mendeteksi air. Kedua detektor termasuk cukup tegar. Oleh karena TCD bersifat non-destruktif, TCD dapat dipasang secara serial sebelum FID (destruktif), sehingga menghasilkan deteksi yang komplementer untuk analit yang sama.[3]
Detektor lain hanya peka terhadap jenis senyawa tertentu, atau hanya bekerja dengan baik pada rentang konsentrasi yang lebih sempit. Ini mencakup:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.