Loading AI tools
Notasi ilmiah adalah notasi yang digunakan untuk menuliskan bilangan yang terlalu besar atau terlalu kecil dengan ringkas dan efisien Dari Wikipedia, ensiklopedia bebas
Notasi ilmiah atau bisa disebut dengan notasi saintifik adalah cara penulisan nomor yang mengakomodasi bilangan yang memiliki nilai-nilai yang terlalu besar atau terlalu kecil untuk dengan mudah ditulis dalam notasi desimal standar pada umumya. Notasi ilmiah memiliki sejumlah sifat yang berguna dan umumnya digunakan dalam kalkulator oleh para ilmuwan, matematikawan, dokter, pecinta googologi, astronom dan insinyur.
Dalam notasi ilmiah, semua nomor ditulis seperti dibawah ini:
("a dikali 10 pangkat b"), dengan pangkat b sebagai bilangan bulat, dan koefisien a adalah bilangan riil. Bilangan bulat a disebut eksponen dan bilangan riil b disebut significand(penanda) atau mantissa.[1] Jika nomor itu negatif, simbol negatif () diletakkan di depan simbol , seperti notasi desimal biasa. Dalam notasi normalisasi, penulisan dilakukan harus dengan memberi nilai pada variabel lebih atau sama dengan 1 namun kurang dari 10 ().
Dalam notasi normalisasi, penulisan notasi ilmiah dilakukan dengan memilih nilai agar nilai absolut dari lebih atau sama dengan 1, namun kurang dari 10 (). Misalnya: 300 akan ditulis sebagai dalam notasi ilmiah yang dinormalisasi, 14.285 akan ditulis sebagai . Jika nilai bilangan berada di antara 0 dan 1, maka nilai bernilai negatif. Misalnya, nilai 0.75 akan ditulis sebagai . Selain itu, angka 10 dan eksponennya biasanya dihilangkan jika nilai eksponen bernilai 0, sebagai contoh: . Proses normalisasi notasi dapat mempermudah dalam perbandingan beberapa nilai karena dapat cukup membandingkan nilai dari pangkatnya saja.
Dalam notasi teknik, penulisan notasi ilmiah dilakukan dengan memilih nilai dalam kelipatan 3, yang berarti nilai absolut berada di antara 1 dan 1000 (). Hal ini dilakukan agar penulisan angka sesuai dengan awalan SI yang dapat mempermudah komunikasi oral maupun pembacaan. misalnya, m dapat dibaca sebagai "dua belas koma lima nanometer" atau dapat ditulis sebagai 12,5 nm. Penulisan notasi ilmiah yang dinormalisasi untuk angka tersebut adalah m yang dapat dibaca sebagai "satu koma dua lima kali sepuluh pangkat negatif 8 meter."
Notasi desimal biasa | Notasi teknik |
---|---|
3.000 | 3×103 |
30.000 | 30×103 |
300.000 | 300×103 |
4.500.000 | 4,5×106 |
500.720.000.000 | 500,72×109 |
0,000000010675 | 10,675×10−12 |
0,000000100675 | 1,00675×10−12 |
Notasi ilmiah standar | Notasi E |
---|---|
2×100 | 2E0 |
3×102 | 3E2 |
4,321768×103 | 4.321768E3 |
−5,3×104 | -5.3E4 |
6,72×109 | 6.72E9 |
2×10−1 | 2E-1 |
9,87×102 | 9.87E2 |
7,51×10−9 | 7.51E-9 |
Kalkulator dan program komputer biasanya menampilkan angka yang sangat besar atau kecil menggunakan notasi ilmiah, dan beberapa program dapat dikonfigurasikan untuk menampilkan semua angka dengan cara tersebut. Karena eksponen pangkat seperti 107 dapat merepotkan untuk ditampilkan atau diketik, huruf "E" atau "e" (eksponen) sering digunakan untuk mewakili "a Dikalikan sepuluh pangkat b", sehingga dimana desimal ditulis sebagai a dan eksponen bilangan bulat sebagai b berarti sama dengan a × 10b. Sebagai contoh 6,022 × 1023 ditulis sebagai 6,022E23
atau 6,022e23
, dan 1,6 × 10-35 ditulis sebagai 1,6E-35
atau 1,6e-35
. Meskipun umum digunakan pada keluaran komputer, versi notasi ilmiah yang disingkat ini tidak disarankan untuk dokumen yang dipublikasikan oleh beberapa panduan gaya penulisan.[2]
Sebagian besar bahasa pemrograman populer - termasuk Fortran, C/C++, Python, dan JavaScript - menggunakan notasi "E" ini, yang berasal dari Fortran dan hadir dalam versi pertama yang dirilis untuk IBM 704 pada tahun 1956.[3] Notasi E telah digunakan oleh para pengembang SHARE Operating System (SOS) untuk IBM 709 pada tahun 1958.[4] Versi Fortran yang lebih baru (setidaknya sejak FORTRAN IV pada tahun 1961) juga menggunakan "D" untuk menandakan angka presisi ganda dalam notasi ilmiah,[5] dan kompiler Fortran yang lebih baru menggunakan "Q" untuk menandakan presisi empat kali lipat.[6] Bahasa pemrograman MATLAB mendukung penggunaan "E" atau "D".
Bahasa pemrograman ALGOL 60 (1960) menggunakan karakter subskrip sepuluh "10" sebagai pengganti huruf "E" pada notasi ini, misalnya: 6.0221023
.[7][8] Hal ini menjadi tantangan bagi sistem komputer yang tidak menyediakan karakter tersebut, sehingga ALGOL W (1966) mengganti simbol tersebut dengan tanda kutip tunggal, misalnya 6.022'+23
, dan beberapa varian Algol Soviet mengizinkan penggunaan huruf Sirilik "ю", misalnya 6.022ю + 23
. Selanjutnya, bahasa pemrograman ALGOL 68 menyediakan pilihan karakter: E, e, \, ⊥, atau 10. Karakter ALGOL "10" dimasukkan dalam pengkodean teks GOST 10859 Soviet (1964), dan ditambahkan ke Unicode 5.2 (2009) sebagai U+23E8 ⏨ simbol eksponan desimal.
Angka-angka penting adalah angka dalam bilangan yang menambah ketepatan nilai bilangan tersebut. Ini mencakup semua angka yang bukan nol, angka nol di antara angka penting, dan angka nol yang diindikasikan sebagai angka penting. Angka nol di depan dan di belakangnya bukanlah angka penting, karena angka tersebut hanya ada untuk menunjukkan skala angka. Sayangnya, hal ini menyebabkan ambiguitas. Angka 1.230.400 biasanya dibaca memiliki lima angka penting: 1, 2, 3, 0 dan 4. Dua angka nol terakhir hanya berfungsi sebagai penunjuk seberapa besar nilai angka itu dan tidak menambah ketepatan.
Ketika sebuah bilangan dikonversi ke dalam notasi ilmiah dengan cara dinormalisasi, koefisien dari bilangan tersebut diperkecil menjadi angka antara 1 dan 9,999... Semua angka penting tetap ada, tetapi angka nol di belakang koma tidak lagi diperlukan. Dengan demikian, bilngan 1.230.400 akan diubah menjadi 1,2304×106 jika memiliki lima digit signifikan. Jika angka tersebut diketahui memiliki enam atau tujuh angka penting, angka tersebut akan ditampilkan sebagai 1,23040 × 106 atau 1,230400 × 106. Perlu diingat bahwa angka nol dibelakang maupun didepan angka penting tidak dianggap dan tidak merubah nilai dari suatu bilangan. Dengan demikian, tambahan angka pada notasi ilmiah tidak menjadi ambigu.[Butuh rujukan]
Sudah menjadi kebiasaan dalam pengukuran ilmiah untuk mencatat semua angka yang diketahui secara pasti dari pengukuran dan memperkirakan setidaknya satu angka tambahan jika ada informasi yang tersedia mengenai nilainya. Bilangan yang dihasilkan mengandung lebih banyak informasi daripada tanpa angka tambahan, yang dapat dianggap sebagai angka penting karena menyampaikan beberapa informasi yang mengarah pada presisi yang lebih besar dalam pengukuran dan dalam agregasi pengukuran (menambahkan atau mengalikannya).
Informasi tambahan tentang presisi dapat disampaikan melalui notasi tambahan. Sering kali berguna untuk mengetahui seberapa tepat angka atau digit terakhir. Sebagai contoh, nilai massa proton yang diterima dapat dinyatakan dengan tepat sebagai 1.67262192369(51)×10-27 kg, yang merupakan singkatan dari (1.67262192369±0.00000000051)×10-27 kg. Namun, masih belum jelas apakah kesalahan (5,1 × 10-37 dalam kasus ini) adalah kesalahan maksimum yang mungkin terjadi, kesalahan standar, atau patokan lainnya.
Dalam notasi ilmiah yang dinormalisasi, dalam notasi E, dan dalam notasi teknik, spasi (yang dalam penyusunan huruf dapat diwakili oleh spasi lebar normal atau spasi tipis) yang hanya diperbolehkan sebelum dan sesudah "×" atau di depan "E" terkadang dihilangkan, meskipun kurang umum untuk melakukannya sebelum karakter abjad.
Mengonversi angka dalam kasus ini berarti mengubah angka ke dalam bentuk notasi ilmiah, mengubahnya kembali ke dalam bentuk desimal, atau mengubah bagian eksponen dari persamaan. Tidak satu pun dari hal ini yang mengubah angka sebenarnya, hanya cara menyatakannya.
merubah angka desimal menjadi ilmiah dapat dilakukan juga dengan menggunakan bantuan komputer, namun dapat juga dilakukan secara mandiri dengan langkah langkah berikut:
Untuk menyederhanakan, Anda biasanya membulatkan angka penting a hingga beberapa digit saja, tergantung pada kebutuhan presisi.
Contoh: Bilangan 0,000000010675 menjadi 1,0675−8 atau 1,07×10−8 jika dibulatkan ke dua angka penting.
Untuk mengubah angka dari notasi ilmiah ke notasi desimal, pertama-tama hilangkan × 10n di bagian akhir, lalu geser pemisah desimal n digit ke kanan (n positif) atau ke kiri (n negatif). Angka 1,2304×106 akan memiliki pemisah desimal yang digeser 6 digit ke kanan dan menjadi 1.230.400,0 sedangkan -4,0321×10-3 akan memiliki pemisah desimal yang digeser 3 digit ke kiri dan menjadi -0,0040321.1.234×103 = 12.34×102 = 123.4×101 = 1234
Bilangan yang berbentuk notasi ilmiah yang dinormalisasi dapat langsung dikalikan atau dibagi dengan bilangan yang dinormalisasi yang lain, perkalian bilangan ilmiah normalisasi dapat dilakukan menggunakan rumus sebagai berikut:
Dimana:
Contoh perkalian notasi ilmiah normalisasi:
Sedangkan untuk pembagian bilangan dalam notasi ilmiah normalisasi dapat dilakukan juga dengan rumus berikut:
Dimana:
Contoh pembagian notasi ilmiah normalisasi:
Sedangkan untuk menjumlahkan atau mengurangi, nilai eksponen harus disamakan antara kedua bilangan sebelum dilakukannya penjumlahan atau pengurangan.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.