Գունդ
From Wikipedia, the free encyclopedia
Remove ads
Գնդի մակերևույթը (գնդոլորտը կամ սֆերան (հուն․՝ σφαῖρα)) տարածության այն կետերի երկրաչափական տեղն է, որոնք հավասարահեռ են մի կետից։ Այդ կետը կոչվում է գնդոլորտի կենտրոն, իսկ գնդոլորտի որևէ կետ նրա կենտրոնի հետ միացնող հատվածը կոչվում է գնդի շառավիղ։ Ոլորտով պարփակված և ոլորտի կենտրոնը պարունակող տարածության մասը կոչվում է գունդ։ Գունդը կառաջանա որպես պտտական մարմին, եթե շրջանը կամ կիսաշրջանը պտտենք տրամագծի շուրջը[1]։

Անվան այլ կիրառումների համար տե՛ս՝ Գունդ (այլ կիրառումներ)
Remove ads
Անալիտիկ երկրաչափություն
Անալիտիկ երկրաչափության տեսակետից ոլորտը 2-րդ կարգի կենտրոնավոր մակերևույթ է, որի հավասարումը ուղղանկյուն կոորդինատական համակարգում ունի
տեսքը, որտեղ a, b, c-ն ոլորտի կենտրոնի կոորդինատներն են։
Remove ads
Գունդը բնութագրող բանաձևերը
Ապացույց
Վերցնենք շառավղով չորս շրջան որոնց կենտրոնները գտնվում են կետում։ Այդ շրջանի շրջանագծի հավասարումն է՝ , որտեղից ։
ֆունկցիան անընդհատ է, աճող և ոչ բացասական։ առանցքի շուրջ շրջանի էարորդի պտտման դեպքում կստացվի կիսագունդ, հետևաբար՝
Որտեղից , ինչ պահանջվում էր ապացուցել։
Ապացույց
ինչ պահանջվում էր ապացուցել։
Գնդի հասկացությունը մետրական տարածության մեջ բնականորեն ընդանրացնում է գնդի հասկացությունը էվկլիդյան երկրաչափությունում։
Remove ads
Գնդային գոտի

Գնդային գոտի կոչվում է սֆերայի այն մասը, որն առնված է գունդը հատող երկու զուգահեռ հարթությունների միջև, իսկ գնդի համապատասխան մասը կոչվում է գնդային շերտ։ Եթե այդ երկու զուգահեռ հարթություններից մեկը շոշափում է սֆերան, ապա ստացվում է գնդային սեգմենտ։ Եթե այդ հարթություններից մեկը շոշափում է գնդոլորտը, իսկ մյուսը անցնում է գնդի կենտրոնով, ապա ստանում ենք կիսագունդ։
Գնդային սեկտոր

Գնդային սեկտոր կոչվում է այն մարմիննը, որը ստացվում է գնդային սեգմենտից և կոնից։ Այն դեպքում, երբ սեգմենտը փոքր է կիսագնդից, գնդային սեկտորը ստացվում է սեգմենտը լրացնելով սեգմենտի հետ նույն հիմքը ունեցող և գնդի կենտրոնը գագաթ ունեցող կոնով։ Իսկ եթե սեգմենտը մեծ է կիսագնդից, ապա գնդային սեկտորը ստացվում է այդ սեգմենտից հեռացնելով նրա հետ ընդհանուր հիմք և գնդի կենտրոնը գագաթ ունեցող կոնը։ Գնդային գոտու մակերևույթի մակերեսը հաշվվում է հետևյալ բանաձևով՝ որտեղ -ը գնդի շառավիղն է, -ը՝ գնդային գոտու բարձրությունը, -ն մոտավորապես հավասար է 3.14։ Եթե գնդի շառավիղը է, իսկ սեգմենտի բարձրությունը՝ , ապա գնդային սեկտորի ծավալը հաշվում է բանաձևով։
Թեորեմ
Գնդի ցանկացած հարթ հատույթ շրջան է։ Ընդ որում, եթե գնդի շառավիղը հավասար է , իսկ հատման հարթության հեռավորությունը գնդի կենտրոնից հավասար է , ապա հատույթի շառավիղը հավասար է ։
Remove ads
Ապացույց

Դիցուք -ն գնդի կենտրոնն է, -ը գնդի կենտրոնի պրոյեկցիան է հատույթի հարթության վրա, , -ն սֆերայի և հատույթի հարթությանը պատկանող որևէ կետ է։ Ստացված եռանկյունում ։ Հետևաբար ։ Այստեղից հետևում է, որ -ն պատկանում է հատույթի հարթության մեջ ընկած կենտրոնով և շառավղով շրջանագծին։ Դժվար չէ ստուգել, որ այդ շրջանագծի ցանկացած կետն ընկած է տրված սֆերայի վրա։
Remove ads
Գնդին ներգծված և արտագծված մարմիններ
- Բազմանիստը կոչվում է գնդային մակերևույթին արտագծած, եթե գնդային մակերևույթը շոշափում է նրա բոլոր նիստերը։ Այդ դեպքում գնդային մակերևույթը
կոչվում է ներգծված բազմանիստին։
- Բազմանիստը կոչվում է ներգծած գնդային մակերևույթին, եթե նրա բոլոր գագաթները ընկած են գնդային մակերևույթի վրա։ Այդ դեպքում գնդային մակերևույթը
կոչվում է արտագծված բազմանիստին։
- Եթե կանոնավոր պրիզմային կարելի է ներգծել գնդային մակերևույթ, ապա գնդային մակերևույթի կենտրոնը բազմանիստի հիմքերի կենտրոնները միացնող հատվածի միջնակետն է։
- Կանոնավոր պրիզմային արտագծած գնդային մակերևույթի կենտրոնը բազմանիստի հիմքերի կենտրոնները միացնող հատվածի միջնակետն է։
- Կանոնավոր բուրգին ներգծած գնդային մակերևույթի կենտրոնը գտնվում է բուրգի բարձրության վրա։
- Կանոնավոր բուրգին արտագծած գնդային մակերևույթի կենտրոնը գտնվում է բուրգի բարձրության կամ նրա շարունակության վրա։
- Գնդային մակերևույթը կոչվում է ներգծված գլանին, եթե այն շոշափում է գլանի հիմքերը և բոլոր ծնորդները։
- Գնդային մակերևույթը կոչվում է ներգծված կոնին, եթե այն շոշափում է կոնի հիմքը և բոլոր ծնորդները։
- Գլանը կոչվում է ներգծված գնդային մակերևույթին, եթե գլանի հիմքերը գնդային մակերևույթի հատույթներ են։
Remove ads
Ծանոթագրություններ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads