From Wikipedia, the free encyclopedia
Բացարձակ կեղծ թիվ-Կոմպլեքս թիվ է 0-ական իրական մասով։ Երբեմն միայն այդպիսի թվերն են կոչվում կեղծ թվեր, բայց այս տերմինը օգտագործվում է նաև զրոյական կեղծ մասով կամայական կոմպլեքս թվեր նշելու համար։ [1] «Կեղծ թիվ» տերմինը առաջադրվել է 17-րդ դարի ֆրանսիացի մաթեմատիկոս Ռենե Դեկարտի կողմից[2], սկզբում այս տերմինի նշանակությունը նվաստացուցիչ էր, քանի որ այդպիսի թվերը համարվել են մտացածին կամ անօգուտ, և միայն Լեոնարդ Էյլերի և Կառլ Գաուսի աշխատանքներից հետո այս գաղափարը ճանաչում է ստացել գիտական աշխարհում։
... (նշված միջակայքը կրկնվում է անվերջ) |
i−3 = i |
i−2 = −1 |
i−1 = −i |
i0 = 1 |
i1 = i |
i2 = −1 |
i3 = −i |
i4 = 1 |
i5 = i |
i6 = −1 |
in = im որտեղ m ≡ n mod 4 |
Թող - կոմպլեքս թիվ է,որտեղ և - իրական թվեր են։ կամ և կամ թվերը անվանում են համապատասխանաբար իրական և կեղծ(հանգունորեն անգլ.՝ real, imaginary) մասերով։
Առաջին անգամ կեղծ թվերը հիշատակվել են հին հույն մաթեմատիկոսի և ինժեներ Հերոն Ալեքսանդրիիսկիի կողմից[3][4],,բայց թվաբանական գործողություններ կատարելու կանոնները (մասնավորապես ՝ բազմապատկումը) դրանցով 1572 թվականին Ռաֆայել Բոմբելլին է մտցրել։ Բոմբելիի հայեցակարգը հայտնվեց Ջերոլամո Կարդանոյի նմանատիպ գործերից առաջ։ XVI—XVII դարերում կեղծ թվերը գիտական աշխարհի մեծամասնության կողմից համարվում էին մտացածին կամ անօգուտ (նման է այն բանի, թե ինչպես զրոյի գաղափարը ընկալվում էր մի ժամանակ)։ Մասնավորապես, Ռենե Դեկարտը, իր «Երկրաչափություն» հիմնարար աշխատության մեջ կեղծ թվերին վկայակոչելով, օգտագործեց «կեղծ» տերմինը ստորացուցիչ իմաստով[5][6]. Կեղծ թվերի օգտագործումը շատ տարածված չէր մինչև Լեոնարդ Էյլերի (1707—1783) և Կառլ Գաուսի (1777—1855) աշխատանքների ստեղծումը։ Կեղծ թվերի երկրաչափական նշանակությունը որպես հարթության կետեր առաջին անագամ նկարագրվել է Կասպար Վեսսելի կողմից (1745—1818)[7]. 1843 իռլանդացի մաթեմատիկ Ուիլյամ Համիլտոնը ընդլայնեց գաղափարը կեղծ թվերի առանցքների տարածությունը մինչև քառաչափ Քվատերնիոններ տարածության, որտեղ երեք հարթությունները նման են կեղծ թվերին կոմպլեքս դաշտում։ Ֆակտորօղակ թեորյայի զարգացումով բազմանդամների օղակի գաղափարը կեղծ թիվը դարձրեց ավելի բովանդակալից և ստացավ հետագա զարգացումներ j — բիկոմպլեքս թվերում[en], որտեղ քառակուսի հավասար է +1:Այս գաղափարը հայտնվեց անգլիացի մաթեմատիկ Ջեյմս Կոկոլի[en] 1848 թվի[8] հոդվածում։
Կոմպլեքս թվերի հարթության վրա կեղծ թվերը գտնվում են ուղղահայաց առանցքին, որը ուղղահայաց է Իրական թվերի առանցքին։ Կեղծ թվերի երկրաչափական մեկնաբանության ձևերից է- դիտարկել ստանդարտ թվային առանցքը, որտեղ դրական թվերը գտնվում են աջ մասում, իսկ բացասականները` ձախում։ 0 կետից x առանցքին կարող է անցնել y առանցք «դրական» ուղղությամբ, վերև գնացող, «դրական» կեղծ թվերը մեծանում են ըստ մեծության դեպի վերև, իսկ «բացասական» կեղծ թվերը մեծանում են ըստ մեծության դեպի ներքև:Այս ուղղահայաց առանցքը հաճախ անվանում են «կեղծ առանցք» և նշանակում է iℝ,, կամ ℑ. Այս մեկնաբանությունով բաժանումը –1-ի համապատասխանում է 180 աստիճանով շրջադարձի կոորդինատների սկզբնակետից:Բաժանումը i-ի համապատասխանում է 90 աստիճանով շրջադարձի «դրական» ուղղությամբ (այսինքն` ժամսլաքին հակառակ), իսկ i2 = −1 հավասարումը խոսում է այն մասին, որ եթե մենք իրականացնենք 90 աստիճանով երկու շրջադարձ կոորդինատների սկզբնակետից, արդյունքը կլինի մեկ շրջադարձ 180 աստիճաննով:Այդ դեպքում 90 աստիճանով շրջադարձի «բացասական» ուղղությամբ (այսինքն` ժամսլաքին ուղղությամբ) նույնպես կբավականացնի այդ մեկնաբանությունը։ Սա արտացոլում է այն փաստը, որ −i նույնպես հանդիսանում է x2 = −1 հավասարման լուծումը։ Սովորաբար, բազմապատկումը կոմպլեքս թվերով նման է կոորդինատների սկզբնակետի նկատմամբ շրջապտույտ կատարելուն արգումենտ[en] կոմպլեքս թվերով հետագա մասշտաբային մեծությամբ։ https://upload.wikimedia.org/wikipedia/commons/0/08/Rotations_on_the_complex_plane.svg
Պետք է զգուշություն ցուցաբերել կեղծ թվերով աշխատելու ժամանակ, որոնք հանդիսանում են գլխավոր նշանակություն[en] քառակուսի արմատների, բացասական թվերի. Օրինակ, այսպիսի Մաթեմատիկական սոփեստություն։ [9]
Երբեմն սա գրվում է այսպես.
Նմանատիպ մաթեմատիկական սոփեստությունը առաջանում է, եթե այս հավասարությունում փոփոխականները չունեն համապատասխան սահմանափակումներ:Այս դեպքում հավասարությունը չի կատարվում, քանի որ երկու թվերն էլ բացասական են:Սա կարելի է ցույց տալ այսպես
որտեղ и x и y — ոչ բացասական իրական թվեր են։
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.