From Wikipedia, the free encyclopedia
A görög tudósok az egyiptomi geométerek – földmérők – tapasztalatainak rendszerezésével olyan tudományt alkottak, amelyet ma geometriának nevezünk. Az Eukleidész munkájában (Elemek) ránk hagyományozott rendszer kétezer évig a világnézet egyik pillérének számított: feltételeztük, hogy az univerzum tapasztalati tere pontosan olyan szerkezetű, mint az euklideszi elmélet által leírt absztrakt tér. A rá épülő geometriát nevezzük euklideszi geometriának.[1]
Eukleidész az Elemek I. könyvében definiálja az egyenesek párhuzamosságát: Két egyenest párhuzamosnak nevez, ha azok egy síkban fekszenek és mindkét irányban meghosszabbítva nem metszik egymást. (I.23. definíció) E definíciót használva bizonyítja be, hogy két egyenes párhuzamos akkor, ha egy harmadik metszővel egyenlő váltószögeket alkot (I.27. tétel), de akkor is, ha a metszőnek ugyanazon az oldalán a megfelelő szögek egyenlők vagy a két belső szög összege két derékszög (I.28. tétel).
Ennek a tételnek a megfordítását mondja ki az I. könyvben az 5. posztulátum:[2]
A párhuzamosok euklideszi elmélete az első könyv néhány tételében válik teljessé:
A párhuzamosok euklideszi elméletének következményei közül a legismertebb a háromszögek szögeinek összegére vonatkozó tétel, mely csak az euklideszi geometriában érvényes.
Már Eukleidész első kommentátorainak feltűnt, hogy az 5. posztulátum nem magától értetődő, nem olyan, amit bizonyítás nélkül el lehetne fogadni, s ezért megkísérelték levezetni. Feltevésüket igazolandó próbálkoztak azzal is, hogy a párhuzamosok euklideszi definícióját más fogalmazásokkal helyettesítsék. Ám ezek az alternatív definíciók és axiómák nem vezettek ellentmondáshoz. Proklosz (i.sz. 410 - 485) a Megjegyzések Eukleidész első könyvéhez c. munkájában megemlíti Poszeidoniosz (i.e. I. sz.) javaslatát, hogy
Az említett I. 33. tételből levezethető, hogy az euklideszi párhuzamosok ekvidisztáns – egyenközű – vonalak. Tehát a javasolt definíció és az euklideszi párhuzamosság nincsenek ellentmondásban, de külön kell őket választani. Proklosz analógiaként említi a hiperbola és a konhoisz aszimptotáját, amellyel Eukleidész szerint a görbe párhuzamos – sohasem metszi azt – de Poszeidoniosz felfogása szerint nem – közeledik hozzá. Proklosz megítélése szerint ez a tény az egész geometriában a legnagyobb paradoxon.
Bolyai János a nemeuklideszi geometria felépítése során a távolságvonalat, mint az egyenestől egyenlő távolságban lévő pontok mértani helyet hiperciklusnak nevezi el, ezzel is kiemelve, hogy az nem egyenes.
Az euklideszi párhuzamosság kevéssé közismert következménye, hogy ha egy egyenest érintő kör középpontját az egyenestől minden határon túl eltávolítjuk, akkor a kör határhelyzete az adott érintő egyenes lesz. Azonban az így létrejövő végtelen sugarú határkör a hiperbolikus síkon nem egyenes. Bolyai paraciklusnak, Lobacsevszkij horociklusnak nevezte el. A határkört egy „sugara” körül megforgatva a határgömböt kapjuk, mely csak az euklideszi térben sík, a hiperbolikus térben paraszféra-horoszféra néven ismerjük.
Amíg a XIX. századi kutatások nem mutattak rá az euklideszitől különböző geometriai rendszerek lehetőségére, addig az „euklideszi” jelzőnek nem volt értelme, akkor ez volt „A geometria”. Ma az euklideszi geometria csak a lehetséges geometriai rendszerek egyike. A legfontosabb eltérések a párhuzamossággal kapcsolatosak, s mint fentebb részleteztük az egyenes bizonyos jellegzetességei és még néhány tétel (tulajdonság) különbözteti meg a többi geometriai rendszertől. Ezek többségét természetesnek vesszük, holott más axiómákra épített rendszerekben az ellenkezőjük igaz. Ilyenek például:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.