Remove ads
olyan pozitív egész szám, melynek valamely osztói összegével kifejezhető az összes nála kisebb pozitív egész szám From Wikipedia, the free encyclopedia
A számelmélet területén egy pozitív egész szám akkor tartozik a praktikus számok vagy pánaritmikus számok[1] közé, ha egymástól különböző osztóinak összegével az összes nála kisebb pozitív egész szám kifejezhető. Például a 12 praktikus szám, mert 1-től 11-ig a számok kifejezhetők 12 osztóinak, tehát az 1, 2, 3, 4, 6 összegeként (beleértve magukat az osztókat): 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 és 11 = 6 + 3 + 2.
A praktikus számok sorozata (A005153 sorozat az OEIS-ben) így kezdődik:
A praktikus számok megjelentek Fibonacci 1202-ben íródott Liber Abaci-jében, racionális számok egyiptomi törtekkel való kifejezésével kapcsolatban. Fibonacci formálisan nem definiálta a praktikus számok fogalmát, de táblázatában megjelennek a praktikus nevezőjű törtek egyiptomi törtekkel való kifejezései.[2]
Maga a „praktikus szám” kifejezés (Srinivasan 1948)-nak köszönhető, aki először próbálta meg osztályozni ezeket a számokat, amit aztán (Stewart 1954) és (Sierpiński 1955) fejezett be. Karakterizációjuk alapján egyszerűen eldönthető egy szám praktikussága prímtényezős felbontásuk alapján. Minden páros tökéletes szám és minden kettőhatvány is praktikus szám.
A praktikus számok több jellemzőjük alapján analógiát mutatnak a prímszámokkal.[3]
Ahogy (Stewart 1954) és (Sierpiński 1955) megmutatták, egy szám praktikus volta egyszerűen eldönthető prímfelbontása alapján. Legyen pozitív egész szám prímtényezős felbontása (ahol a prímek sorba vannak rendezve, ); ebben az esetben akkor és csak akkor praktikus szám, ha minden prímtényezője kellően kicsi ahhoz, hogy kifejezhető legyen a kisebb osztók összegeként. Ahhoz, hogy ez teljesüljön, az első prímnek 2-nek kell lennie, és minden i-re 2 és k között, minden további -nek teljesítenie kell a következő egyenlőtlenséget:
ahol jelöli x osztóinak összegét. Például 2 × 3² × 29 × 823 = 429606 praktikus szám, mivel a fenti egyenlőtlenség igaz mindegyik prímtényezőjére: 3 ≤ σ(2)+1 = 4, 29 ≤ σ(2 × 3²)+1 = 40 és 823 ≤ σ(2 × 3² × 29)+1=1171. Ez a karakterizáció kiterjeszti (Srinivasan 1948) részleges klasszifikációját.
A fenti feltétel szükséges és elégséges feltétele annak, hogy egy szám praktikus legyen. Egyrészt, a feltétel szükséges ahhoz, hogy a kifejezhető legyen n osztóinak összegeként, mivel ha az egyenlőtlenség nem teljesül, akkor az összes kisebb osztót összeadva sem érné el az összeg a -et. Másrészt, a feltétel elégséges is, ami indukcióval megmutatható.
Ennél jóval erősebb állítást fogunk bizonyítani: ha n prímtényezős felbontása kielégíti a fenti feltételeket, akkor bármely kifejezhető n osztóinak összegeként, a következő lépésekben:
Számos említésre méltó egész számhalmaz létezik, ami kizárólag praktikus számokból áll:
Ha n praktikus szám, akkor bármely m/n alakú racionális szám kifejezhető a ∑di/n összeggel, ahol minden di az n-nek különböző osztója. Az összeg minden tagja egységtörtté egyszerűsíthető, ezért az összeg megfelel m/n egyiptomi törtként való kifejezésének. Például:
Fibonacci 1202-es Liber Abaci-jében[2] számos módszert ír le racionális számok egyiptomi törtként való felírására. Ezek közül az első annak vizsgálata, hogy a szám esetleg máris egységtört, de a másodikban megkísérli kifejezni a számlálót a nevező osztóinak összegeként; ez a módszer csak akkor ad garantáltan eredményt, ha a nevező praktikus szám. Fibonacci táblázatokat készített az olyan törtekhez, ahol a számláló a 6, 8, 12, 20, 24, 60 és 100 praktikus számok egyike.
(Vose 1985) megmutatta, hogy minden x/y alakú szám kifejezhető legfeljebb tagból álló egyiptomi tört alakban. A bizonyítás részeként praktikus számok ni sorozatát keressük azzal a tulajdonsággal, hogy minden ni-nél kisebb szám felírható az ni szám különböző osztójának összegeként. Ekkor úgy választjuk meg i-t, hogy ni − 1 < y ≤ ni és xni-t y-nal elosztva q-t kapunk r maradékkal. Az előző választásainkból következik, hogy . A jobb oldal számlálóit kibontva ni osztóösszegeinek alakjába megkapjuk a kívánt egyiptomi tört-alakot. (Tenenbaum & Yokota 1990) hasonló technikát alkalmaz, de praktikus számok egy másik sorozatát használja annak megmutatására, hogy minden x/y alakú szám felírható egyiptomi tört alakban oly módon, hogy a legnagyobb nevező .
Szun Cse-vej 2015. szeptemberi sejtése szerint[6] bármely pozitív racionális szám felírható véges számú praktikus szám reciprokösszegeként, tehát olyan egyiptomi törtkifejezésként, ahol minden nevező praktikus szám. A sejtés bizonyítása David Eppstein blogján olvasható.[7]
A praktikus számok iránti érdeklődés egyik oka, hogy számos tulajdonságukban hasonlítanak a prímszámokra. Valóban, léteznek a Goldbach-sejtésnek és az ikerprím-sejtésnek analógiái praktikus számokra nézve: minden pozitív egész szám felírható két praktikus szám összegeként, illetve végtelen számú x − 2, x, x + 2 alakú praktikusszám-triplet létezik.[8] Melfi megmutatta, hogy végtelen számú praktikus Fibonacci-szám létezik (A124105 sorozat az OEIS-ben); az analóg kérdés, hogy létezik-e végtelen számú Fibonacci-prím, még eldöntetlen. (Hausman & Shapiro 1984) megmutatta, hogy bármely pozitív valós x-re létezik praktikus szám az [x²,(x + 1)²] intervallumban, ami analóg a prímszámokra vonatkozó Legendre-sejtéssel.
Jelölje p(x) a legfeljebb x nagyságú praktikus számok számát. (Margenstern 1991) sejtése szerint p(x) aszimptotikusan egyenlő cx/log x-szel valamely c konstansra, ami a prímszámtételre emlékeztető képlet. A képlet megerősíti (Erdős & Loxton 1979) sejtését, miszerint a praktikus számok zéró sűrűséggel helyezkednek el az egészek között. (Saias 1997) bizonyította, hogy megfelelő c1 és c2 konstansokra:
Végül (Weingartner 2015) bizonyította Margenstern sejtését, megmutatva, hogy
ha és a konstans .
Szun Cse-vej 2013-as sejtése szerint az (n = 3, 4,...) sorozat szigorúan monoton csökkenő, határértéke 1.
Szun Cse-vej 2015-ös sejtése szerint bármely r pozitív racionális számhoz léteznek olyan, páronként különböző q(1)..q(k) praktikus számok, melyekre igaz, hogy
Például 2 = 1/1 + 1/2 + 1/4 + 1/6 + 1/12, ahol 1, 2, 4, 6 és 12 praktikus számok, vagy 10/11 = 1/2 + 1/4 + 1/8 + 1/48 + 1/132 + 1/176, ahol 2, 4, 8, 48, 132 és 176 praktikus számok.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.