az 1 szám más alakban From Wikipedia, the free encyclopedia
A matematikában a 0,999… végtelen szakaszos tizedestört, amelyet még
alakban is írnak. Érdekessége, hogy eggyel egyenlő, minthogy az 1 számnak két tizedestört előállítása is van, az
Más szavakkal a '0,999…' szimbólum ugyanazt a számot jelöli, mint az '1' szimbólum. Magának az 1 = 0,999… egyenlőségnek (illetve az ilyen típusú egyenlőségeknek) sokféle bizonyítása ismert, ezek a szigorúság különböző fokán állnak, attól függően, hogy középiskolások vagy felsőbb tanulmányokat folytatók számára készültek.
Az utóbbi évtizedekben a matematikapedagógusok vizsgálatokat végeztek arra vonatkozóan, hogy a tanulók mennyire fogadják el az 1 = 0,999… típusú egyenlőségeket. A felmérések szerint a tanulók közül sokan alapvetően megkérdőjelezik vagy elutasítják az egyenlőség fennállását, sokakat pedig a tankönyvek, a tanárok és aritmetikai érvelések meggyőznek arról, hogy igaz a szóban forgó egyenlőség. Mindazonáltal gyakorta ragaszkodnak ahhoz, hogy az állítás igazsága további igazolásra szorul. A diákok érvelése (akár az állítás cáfolásakor, akár igazolásakor) általában a valós számokkal kapcsolatos néhány intuitív elképzelés körül csoportosul. Például, hogy minden egyes számnak egyetlen tizedestört alakja van. Egy másik elképzelés, hogy az 1 a 0,999…-től végtelen kicsiben különbözik, ahol a különbség az infinitezimális egység.
A 0,999… az a szám, amely a 0; 0,9; 0,99; 0,999, … sorozat határértéke. E sorozat n-edik elemében n–1 kilences van a tizedesvessző után. Így az az állítás, hogy 0,999… = 1, egyenértékű azzal, hogy ez a sorozat az egyhez tart.
A határérték létezik, hiszen a sorozat monoton növekvő (az n+1-edik tag 9·10-n-nel nagyobb az n-ediknél) és felülről korlátos (az 1 jó felső korlát).
A 0,999… végtelen tizedestört, és az állítás néhány nagyon egyszerű bizonyítása kihasználja a tízes számrendszer aritmetikai tulajdonságait. Az összehasonlítás alaptulajdonsága: két véges tizedestört, aminek különbözőek a jegyeik, különböző számot jelent, eltekintve az utánuk írt nulláktól. Az 1 nem kitüntetett szám abban az értelemben, hogy csak ő rendelkezne két tizedestört alakkal. Minden véges tizedestört alakban írható szám kétféleképpen is megadható. Például:
Továbbá a valós számok végtelen sor alakjában való felírása, mint amely maga a 0,999… kifejezés is, a tízestől különböző számrendszerben sem feltétlenül egyértelmű. Minden számrendszerben vannak olyan valós számok, melyek többféleképpen írhatók fel az adott számrendszerben, mi több, ez még a tört és irracionális alapú számrendszerekben is így van. A jelenség alkalmazásaként megemlíthetjük a Cantor-halmazra vonatkozó vizsgálatokat. Speciálisan, bármely 0,99…9 alakú szám egynél kisebb, ha véges sok kilences van benne.
Még a matematika szakos hallgatók is gyakran kételkednek 0,999… és 1 egyenlőségében. Az okok között szerepel a határérték szabatos fogalmától való makacs idegenkedésük és az infinitezimális mennyiségek természetéről való – a bevett nézethez képest – másként gondolkodásuk. A zavart több közös tényező fokozza:
Mindezen szemléletek a valós számok hagyományos értelmezésében hibás gondolatmenetek alapjai, ám néhány közülük érvényes lehet más számkörökben, például a nemsztenderd valós számok elméletében. Hasznosak lehetnek továbbá akár általános matematikai értelemben, akár tanulságos ellenpéldaként tekintve, ami a 0,999… jobb megértéséhez vezethet.
Nagy részükkel David Tall is találkozott, amikor a tanulást és a gondolkodást tanulmányozta hallgatói körében. Úgy találta, hogy a hallgatók azért utasították el először ennek az egyenlőségnek a gondolatát, mert a 0,999… számot egy olyan sorozatnak látták, amely egyre inkább megközelíti az 1-et, és nem egy rögzített értékként.
A következő vélemények is felmerültek:
Legtöbbjük meggyőzhető az elemi bizonyítások segítségével, de vannak, akik továbbra is kételkednek és frusztrálódnak.[5] A hallgatók, akik képesek precíz definíciókat alkalmazni, egy meglepő eredmény láttán automatikusan újra az intuitív képek hatása alá kerülnek, így a kevésbé elemi bizonyításokat sem mindig értik meg.
Egy valós analízist tanuló hallgató például képes volt belátni, hogy 1⁄3 = 0,333… a szuprémum segítségével, de még mindig ellenállt a 0,999… = 1 egyenlőségnek, a hosszú osztásra vonatkozó tapasztalataira hagyatkozva.[6] Mások, akik szintén be tudják bizonyítani, hogy 1⁄3 = 0,333…, még mindig nem érzik megfelelőnek a törteket használó bizonyítást, mondván, hogy a logika fontosabb a matematikában, mint a számítások.
Joseph Mazur mesélte, hogy volt egy egyébként kitűnő hallgatója, aki majdnem mindenben kételkedett, amit az oktatója mondott, de mindig hitt a számológépének. Azt hitte, hogy 9 tizedesjegy elég a matematikához, még ahhoz is, hogy kiszámolja 23 négyzetgyökét. Képtelen volt megérteni a 9,99… = 10 határértékes bizonyítását, és „vadul elképzelt végtelen növekvő sorozatnak” nevezte.[7]
Ed Dubinsky és Tsai elmélete szerint, akik a 0,999… számot véges, de meghatározatlanul hosszúnak fogják fel, amely egy végtelenül kis mennyiséggel kisebb 1-nél, azok nem értették meg a végtelen tizedestörteket eredményező végtelen sorokat. Megint mások a sor és sorösszeg fogalmát nem képesek megkülönböztetni. Számukra a 0,999… egy sort (tehát egy számítási eljárást és nem sorösszeget, vagyis számot) jelöl, míg az 1 az szám, azaz nem ugyanolyan minőségű, így nem lehetnek egyenlők.[8]
Ha , akkor . Mivel , ezért
A törtek felírhatók véges vagy végtelen szakaszos tizedestört alakban. Így például 1⁄3 egyenlő lesz a 0,333… végtelen szakaszos tizedestörttel, amiben a 3-as számjegy végtelen sokszor ismétlődik. Ezt az egyenlőséget hárommal szorozva adódik a 0,999… = 1 egyenlőség.
Minden 3-as számjegy 3-mal szorzódik, így lesz belőle 9, ezért 3 × 0,333… = 0,999… (nincs átvitel), és 3 × 1⁄3 = 1, tehát .[9]
A bizonyítás egy másik változata az 1/9 = 0,111… egyenletet szorozza 9-cel.
|
|
Ugyanennek a bizonyításnak egy könnyített változata 9/9 = 1, és 9/9 = 0,999…, mivel 1/9 = 0,111… Az egyenlőség tranzitivitása miatt 1 = 0,999…
Ez az okoskodás hallgatólagosan feltételezi, hogy a végtelen tizedes törtekkel ugyanúgy kell szorozni, mint a végesekkel: itt például bizonyítás nélkül elfogadjuk, hogy a
típusú azonosságokból következik, hogy
A bizonyítás egy másik módja azt a tényt használja ki, hogy 10-zel szorozva a jegyek nem változnak, csak a tizedesvessző mozdul el, és hallgatólagosan feltételezi, hogy ez a szabály a végtelen tizedes törtekre is érvényes. Ezért 10 × 0,999… = 9,999…, ami 9-cel nagyobb az eredeti számnál.
A 9,999… – 0,999… kivonás jegyről jegyre végezhető el, és 9 – 9 = 0 minden, a tizedesvessző utáni jegyre fennáll. Így a művelet eredménye 9.
Most felírunk egy egyenletrendszert, és megoldjuk 0,999…-re. Nevezzük ezt a számot c-nek. Az egyenlet így néz ki: 10c – c = 9. Ez lényegében ugyanaz, mint 9c = 9. Ezt 9-cel osztva c = 1.[9]
Egyenletek sorozatával felírva
A 0,999…-re vonatkozó kérdés valójában nem érinti az analízis megalapozási problémáit, valós számok bevezetéséhez nincs szükség tizedestört-előállításra, így az ezzel a kérdéssel való foglalkozás a matematika szokásos felépítésében sokáig halogatható. Előbb-utóbb azonban elkerülhetetlen, hogy az analízis definiálja a valós számok tizedestört alakját. Ezen olyan
szimbólumsorozatot értünk, melyben b0 jelöli a szám egészrészét, a törtrészt pedig a
végtelen, tizedesjegyekből álló sorozat elemei reprezentálják. A tizedesvessző az egész- és a törtrészt választja el. A 0,999… vizsgálatánál eltekinthetünk a negatív egészrész esetétől, sőt akár magától az egészrésztől is. Világos, hogy:
A végtelen tizedestörteket többnyire végtelen sorok összegeként vezetik be. Általános esetben a tizedestört alak által kijelölt szám értéke:
Mivel a 0,999…-ben a tizedesjegyek mind azonosak, ezért az előbbi képlet kiszámításához elegendő a mértani sorokról szóló tételhez fordulnunk. Eszerint, ha a tetszőleges valós szám, amely a mértani sor kezdőeleme és |r| < 1 szám, akkor
Jelen esetben a sor az előbbi második tagjánál kezdődik:
A 0,999… esetén a = 9 és r = , ezért a képlet ekkor
Ez a bizonyítás (pontosabban a 9,999… = 10 bizonyítása) Leonhard Euler 1770-es Az algebra elemei című munkájában is szerepel.[11]
Felhasználtuk azt a tételt, ami szerint, ha (an) konvergens számsorozat, és határértéke a, akkor tetszőleges -re a can sorozat is konvergens, és határértéke ca.
Ennek bizonyításához először tekintsük azt a speciális esetet, amikor a = 0.
Legyen ε tetszőleges pozitív szám, és K > |c| pozitív szám. (an) tart a nullához, ezért ε /K -hoz van egy elég nagy N szám, hogy ha n>N, akkor |an| < ε /K. Eszerint minden n>N-re |(ca)n| = |can| < Kε /K=ε, és ezzel can szintén a nullához tart.
Ha a nem nulla, akkor a sorozat minden tagjából levonunk a-t, így olyan (an – a) sorozatot kapunk, amelynek határértéke nulla. A speciális eset szerint, ha c-vel szorozzuk, akkor is tart a nullához, ezért c(an – a) = (can – ca) határértéke nulla, tehát a can sorozat ca-hoz tart.[12]
Hasonlók tudhatók két sorozat összeadásáról és kivonásáról is. Itt mindkét sorozatban elmegyünk addig, amíg ε / 2 -nél közelebb kerülünk a határértékhez. Megnézzük, melyikben nagyobb a küszöbszám. Ez a küszöb jó lesz az összegsorozathoz és az ε számhoz.
Ezzel a tétellel bizonyítható a számjegy-manipuláció és a törtekkel való bizonyítás helyessége is.
A mértani sor összegére vonatkozó eredmény Eulernél sokkal korábbi. Már Apollóniosz is használta a parabolaszelet területének meghatározására. A 18. században a deriválásokat tipikus módon a sorokkal végzett tagonkénti műveletekkel végezték úgy, ahogy ennek a szócikknek az algebrai megoldásokat részletező szakaszában bemutattuk. Bonnycastle 1811-es An Introduction to Algebra című tankönyvében már felvonultatja a 0,999…-ra vonatkozó állítás mértani sorral történő bizonyítását.[13] A 19. században pontosították a sorösszeg fogalmát, oly módon, ahogy az ma szokásos: a sor összege nem más, mint egy sorozat részletösszegei sorozatának határértéke. A határérték szigorú fogalmára hivatkozó bizonyítás szerepel például Rudin könyvében.
Bővebben. A (x1, x2, x3, …) sorozat határértéke az x szám, ha az |xn – x| távolság tetszőlegesen kicsivé válik, amint az n elegendően nagy. A 0,999… = 1 kijelentés megfogalmazható a határérték felhasználásával és igazolható is:
Az utolsó lépésnél – hogy lim 1/10n = 0 – gyakran hivatkoznak a valós számok arkhimédészi tulajdonságára, azaz arra, hogy minden valós számnál van nagyobb természetes szám (amiből következik, hogy 1/n minden pozitív valós számnál kisebbé válik, ahogy az 1/10n is).
A sorösszeggel történő definíció lehetőséget nyújt arra, hogy definiáljuk azt a valós számot, melyet a tizedestört-előállítás meghatároz. Ezzel ellenkező szemlélet, hogy egy adott valós számhoz definiálunk egy olyan tizedestört alakot, amely megnevezi.
Tegyük fel, hogy az x valós számról azt tudjuk, hogy a [0; 10] intervallumba esik. Felírjuk egy tizedes előállítását.
zárt intervallumok egyikébe biztosan beleesik. Tegyük fel, tudjuk, hogy a [2; 3]-ban van. Ekkor rögzítsük a b0 = 2 számot, mint tizedestört alakban az egész számot.
Ezt az eljárást szem előtt tartva, az, hogy 1 egyaránt lehet 1,000… és 0,999…, annak a következménye, hogy az 1 szám eleme mind a [0;1], mind az [1;2] intervallumnak, így az eljárás első lépésében akármelyiket választhatjuk az 1 tizedestört előállítására. Az eljárás helyességéhez azt kell megmutatnunk, hogy a tizedestört-előállítás egyetlen valós számra mutat. Ezt meg lehet oldani határértékkel, de más konstrukciók a rendezést használják.[15]
Nyílegyenes választás a beágyazott intervallumok tétele, amely kimondja, hogy egymásba ágyazott zárt intervallumok végtelen sorozatának egy közös pontja van. Így b0,b1b2b3… az a szám, amely benne van a {b0, b0.b1, b0.b1b2, …} intervallumok mindegyikében.
Ez a tétel a valós számok egy még alapvetőbb tulajdonságán nyugszik: a legkisebb felső korlátok, azaz a szuprémumok létén. Ehhez definiálni kell b0-t a b1b2b3… approximáló sorozat legkisebb felső korlátjaként. Látható, hogy ez az eljárás konzisztens a felosztási folyamattal, amiből ismét következik, hogy 0,999… = 1.
Az, hogy egy valós számnak két különböző tizedestört alakja lehet, csupán annak a következménye, hogy van két, valós számokból álló halmaz, amelynek ugyanaz a legkisebb felső korlátja.[16]
Más megközelítések a valós számokat a racionális számok fölötti struktúraként tekintik. Az axiomatikus halmazelmélet szerint a 0-val kezdődő természetes számok mindegyikének van rákövetkezője. Az így definiált természetes számok ellentettjeikkel együtt kiadják az egész számokat, és ezek hányadosai pedig a racionális számokat. Ezeken a számkörökön belül aritmetikai műveletek is végezhetők: ezek a számok összeadhatók, kivonhatók, szorozhatók, oszthatók egymással. Sőt, rendezett struktúrákat adnak, így az egyik szám összehasonlítható egy másikkal, és nemcsak azt lehet megkérdezni, hogy egyenlőek-e, hanem lehet az egyik kisebb vagy nagyobb a másiknál.
Az előzőknél jóval nagyobb kiterjesztés a racionális számokról a valósakra áttérni. Többféle lehetőség is kínálkozik erre, ezek közül kettőt 1872-ben publikáltak: a Dedekind-szeleteket és a Cauchy-sorozatokat. A valós analízisről szóló jegyzetek nem tartalmazzák a 0,999… = 1 direkt bizonyítását, inkább az analízis axiómáival foglalkoznak. A legtöbb konstrukciónak az a célja, hogy bemutassa vagy igazolja a valós számok axiómáit, amelyek a fenti bizonyításokat támogatják. Néhány szerzőnek viszont az az ötlete, hogy elsőre a konstrukciókat mutassák be, mert úgy logikusabb a felépítés, és a végeredmények függetlenebbek.[17]
A Dedekind-szeleteket használó megközelítés szerint minden valós szám a nála kisebb racionális számok halmaza.[18] Speciálisan, az 1 azoknak a racionális számoknak a halmaza, amelyek kisebbek 1-nél.[19] Minden pozitív tizedestört meghatároz egy Dedekind-szeletet: azoknak a véges tizedestörteknek a halmazát, amelyek levágással kaphatók belőle. Így a 0,999… valós szám tekinthető az olyan r valós számok halmazának, amelyekre r < 0 vagy r < 0,9 vagy r < 0,99 vagy r kisebb, mint egy alakú szám. 0,999… összes eleme kisebb, mint 1,[20] így eleme az 1 valós számnak. Visszafelé, az 1 elemeire , amiből . Mivel 0,999… és 1 ugyanazokat az elemeket tartalmazza, ezért a két halmaz, így a két szám egyenlő.
A valós számok konstrukciójának egy másik módja a Cauchy-sorozatokat használja.
Először is x és y távolságát az |x ‒ y| értékkel definiálja, ahol |z| a szokott értelemben vett abszolútérték-függvény. A továbbiakban a megközelítés ezt a távolságmértéket használja.[21]
A sorozatokat leképezésként értelmezi a pozitív egészek halmazáról a valós számok halmazába, ahol is n-nek a sorozat n-edik eleme felel meg. A valós számokat Cauchy-sorozatokként definiálja, ahol is két sorozatot egyenlőnek tekint, ha az (xn ‒ yn) sorozat határértéke 0.
Ebben a megközelítésben azt kell bizonyítani, hogy az
sorozat határértéke 0. A sorozat n-edik tagját tekintve elég megmutatni, hogy: Ez pedig nyilvánvaló, hiszen a 0,1 < 1 hányadosú mértani sor határértéke véges.
A Cauchy-sorozatokat használó definíciót elsőként Eduard Heine és Georg Cantor publikálta, mindketten 1872-ben.[22]
A 0,999… = 1 állítás és bizonyításai többféleképpen is általánosíthatók.
Az 1 alternatív reprezentációja a nem egész alapú számrendszerekben is megjelenik. Például abban a számrendszerben, amelynek , az aranymetszési arány az alapja, az 1 két lehetséges reprezentációja 1,000… és 0,101010…; de végtelen sok olyan reprezentáció is van, amelyben szomszédos 1-esek is vannak. Sőt, majdnem minden 1 és 2 közötti számra 1-nek megszámlálhatatlanul sok kifejtése van. Másrészt megszámlálhatatlanul sok olyan alap van, amire az 1-nek csak egy másik kifejtése van az adott alapra nézve. Ezt az eredményt elsőként magyar matematikusok látták be, mégpedig Erdős Pál, Horváth Miklós és Joó István 1990 körül. 1998-ban Komornik Miklós és Paola Loreti meghatározta a legkisebb ilyen bázist, 1,787231650…-t; ahol is fennáll 1 = 0,11010011001011010010110011010011…; a jegyeket a Thue–Morse-sorozat adja, ez a felírás pedig nem periodikus.[25]
Egy még messzebb menő általánosítás a még általánosabb helyi értékes számrendszerekről szól. Ezekben is többféle reprezentáció létezik, és a nehézségek is ezzel együtt nőnek.
A kiegyensúlyozott hármas számrendszerben (ahol a jegyek 0, +1, -1), 1/2 = 0,111… = 1,111….
A faktoriális számrendszerben 1 = 1,000… = 0,1234….
Marko Petkovšek belátta, hogy a helyi értékes rendszerek használatának szükséges következménye a többféle számábrázolás. Minden, az összes valós számot ábrázoló számrendszerben sűrű azoknak a valós számoknak a halmaza, amelyek többféleképpen is reprezentálhatók.[26]
Az egyik alkalmazás az elemi számelmélethez tartozik. 1802-ben H. Goodwin publikálta megfigyelését a végtelen szakaszos tizedestörtekről. Ha a tört nevezője a prímszámok egy bizonyos részéhez tartozik, akkor efféle dolgok történnek:
E. Midy egy ennél általánosabb tételt, Midy tételét bizonyította be 1836-ban. A publikáció homályos volt, és tisztázatlan, hogy használta-e a 0,999…-ről szóló eredményt, de W. G. Leavitt egy modern bizonyítása igen. Ha bizonyítható, hogy a 0,b1b2b3… végtelen tizedestört egész szám, akkor ennek a 0,999…-nek kell lennie, ami a tételben szereplő 9-esek forrása.[27]
Az ez irányú próbálkozások motiválhatják a legnagyobb közös osztó, a moduláris aritmetika, a Fermat-prímek, a rendezés, a csoport és a kvadratikus reciprocitás fogalmának megértését.[28]
Visszatérve a valós analízisre, a 3-as számrendszerbeli analóg 0,222… = 1 kulcsszerepet játszik a legegyszerűbb fraktálok egyikében, a Cantor-halmazban:
A felírás n-edik jegye a pont helyére utal a konstrukció n-edik lépésében. Például a ²⁄3 a megszokott 0,2 vagy 0,2000… alakjában van adva, mert az első törléstől jobbra és az összes törléstől balra fekszik. Az 1⁄3 nem 0,1-ként, hanem 0,0222… -ként van reprezentálva, mert az első törléstől balra és az összes törléstől jobbra fekszik.[29]
A kilencesek Cantor más munkáiban is visszatérnek. Az egységintervallum pontjainak megszámlálhatatlanságát a Cantor-féle átlós eljárással is bizonyítani lehet. A bizonyításnak el kell kerülnie az olyan párokat, mint amilyen 0,2 és 0,1999… . Egy egyszerű módszer minden számot végtelen tizedestört alakba ír, tehát a véges tizedestörtekkét felírható számokat is így adja meg. Egy másik módszer kikerüli a végtelen szakaszos kilenceseket.[30] Cantor eredeti érvelése a kettes számrendszert használja, és a hármas számrendszerbeli felírásokat 2-es számrendszerbe transzformálva a Cantor-halmaz megszámlálhatatlan volta bizonyítható.[31]
Ámbár a valós számok egy nagyon hasznos számkör, a 0,999… valós számnak tekintése konvenció. Timothy Gowers érvelése szerint a 0,999… = 1 egyenlőség konvenció:
Ez azonban nem egy önkényes megállapodás, hiszen elvetése vagy a megszokott aritmetikai szabályok elvetését, vagy furcsa új objektumok bevezetését kívánja meg.[32]
Definiálhatók új számkörök, melyek más szabályokat használnak, vagy új objektumokat vezetnek be. Ezekben a számkörökben nem mindig működnek a valós számoknál alkalmazott bizonyítások, így újra kell vizsgálni a 0,999… = 1 kérdését, és egyes ilyen számrendszerekben ez az egyenlőség nem teljesül. Mások viszont inkább a valós számok kiterjesztései, mint független alternatívák, és így a 0,999… = 1 egyenlőség továbbra is fennáll.
A 0,999… = 1 egyes bizonyításai kihasználják, hogy a standard valós számok arkhimédészien rendezettek: nincsenek nemnulla infinitezimálisok. De vannak nem arkhimédészi rendezett algebrai struktúrák, a valós számok egyes alternatíváit is beleértve. A 0,999… jelentése attól függ, hogy melyik struktúrában tekintjük.
Például a duális számok magukban foglalnak egy infinitezimális elemet, amit ε jelöl. Ez megfelel a komplex testbővítés képzetes egységének, kivéve, hogy ε² = 0. A duális számokon megadható egy lexikografikus rendezés, amiben ε többszörösei nem arkhimédészi elemek lesznek.[33] Jegyezzük meg, hogy a duális számok körében továbbra is teljesül 0,999… = 1, mivel a duális számok a valós számok kiterjesztései. A duális számok között nincs legkisebb pozitív szám, mert ha van ε, akkor van ε/2 is.
A standard valós számoknak léteznek más alternatíváik is. Ezek konstruálhatók a toposzelmélet segítségével és a többértékű logikával, vagy speciális esetben a klasszikus logikával. Például vannak olyan konstrukciók, amelyekben az infinitezimális elemeknek nincs reciprokuk.[34]
A nem standard analízis arról ismert, hogy egy olyan számkörrel működik, ami infinitezimálisok teljes tömbjeit tartalmazza. Ez lehetőséget ad az analízis egy másfajta megközelítésére, ami talán intuitívabb, mint a standard változat.[35]
A. H. Lightstone 1972-ben foglalkozott a nem standard decimális kifejtésekkel, ahol a (0, 1) kiterjesztett valós számoknak egyértelmű a kiterjesztett decimális kifejtése. A 0,ddd…;…ddd… alakú jegysorozatokat kiterjesztett egész számokkal indexelte. Ebben a formalizmusban a 0,333… -nak két természetes kiterjesztése van:
A kombinatorikus számelmélet alternatív valós számokat ad meg, a végtelen kék-piros Hackenbush-stringeket részletes releváns példaként. 1974-ben Elwyn Berlekamp megfeleltette egymásnak a Hackenbush-stringeket és a valós számok kettes számrendszerbeli leírását az adattömörítés által motiválva. Például a LRRLRLRL… Hackenbush-string értéke 0,010101… = 1/3.
Az LRLLL… string, amely 0,111…-t jelent, infinitezimálisan kisebb egynél, a különbségük a szürreális 1/ω szám, ahol ω a legkisebb végtelen rendszám. A releváns játszma LRRRR… vagy másként 0,000….[37]
A bizonyítás egy másik megkérdőjelezhető pontja az 1 ‒ 0,999… kivonás. Ha ez a kivonás nem végezhető el, akkor 0,999… < 1. Léteznek olyan struktúrák is, amelyekben működik az összeadás, de a kivonás nincs értelmezve: ilyenek például a kommutatív félcsoportok, a kommutatív monoidok és a félgyűrűk. Richman két ilyen rendszert tekintett, és belátta, hogy 0,999… < 1.
Először is Richman a nem negatív tizedes számokat végtelen tizedestörtekként definiálta. Megadott egy lexikografikus rendezést és egy összeadási műveletet. Ebben a rendszerben 0,999… < 1, mivel 0 < 1 az első helyen, de minden végtelen x-re, amire 0,999… + x = 1 + x. Így a tizedes számok körében az összeadás nem mindig megfordítható, és nincs köztük az 1⁄3 szám sem. A szorzás bevezetésével a tizedes számok pozitív, teljesen rendezett, kommutatív félgyűrűt alkotnak.[38]
A szorzás definiálásához Richman egy másik rendszert is bevezetett, amit D-szeletnek nevezett. Ez a tizedestörtek Dedekind-szeleteinek halmaza. Rendszerint ez a definíció a valós számokhoz vezet, de a d tizedestört két szeletet is megenged: (‒∞, d ) és (‒∞, d ], ez utóbbi a principális szelet. Ennek eredményeként a valós számok nehezen élnek együtt a tizedestörtekkel. Újra 0,999… < 1.
Nincsenek pozitív infinitezimálisok a D-szeletekben, de itt rengeteg negatív infinitezimális jelenik meg, például 0‒, amelynek nincs végtelen tizedestört alakja. Richman arra a következtetésre jutott, hogy 0,999… = 1 + 0‒, ahol a „0,999… + x = 1” egyenletnek nincs megoldása a tizedes számok körében.[39]
Amikor szóba kerül a 0,999…, akkor sokan azt hiszik, hogy van egy utolsó kilences a végtelenben. Az 1 ‒ 0,999… kivonás eredménye a 0,000…1 pozitív szám, ahol az 1 a végtelenben van. Az intuíció világos: ha a 0,999… utolsó kilenceséhez hozzáadunk egyet, az végigfut, lenulláz minden kilencest és az első helyen 1-et ad. Az ötlet egyebek között azon bukik meg, hogy nincs utolsó kilences a 0,999… számban.[40]
Máshol kell keresni a kilencesek egy olyan végtelen sorát, amiben van egy utolsó kilences.
A p-adikus számok egy alternatív számrendszer, amellyel a számelmélet foglalkozik. Miként a valós számok, úgy a p-adikus számok is felépíthetők racionális számok Cauchy-sorozataként. Felfoghatók valós számokként, egy másik metrikában, egy másik helyi értékes rendszerrel. A konstrukció egy nem arkhimédészi metrikát használ, amiben 0 közelebb van p-hez, mint az 1, és pn közelebb van a nullához, mint p. A p-adikus számok testet alkotnak, ha p prím, és gyűrűt, ha összetett, mint amilyen a 10 is. Így a p-adikus számok körében műveletek végezhetők, és ehhez nem kellenek infinitezimálisok.
A 10-adikus számok körében a decimális kifejtések analógja balra folyik. A …999 10-adikus kifejtésben van utolsó kilences, de nincs első. Ha hozzáadunk egyet, akkor ez történik: 1 + …999 = …000 = 0, és így …999 = ‒1.[41]
Egy másik bizonyítás mértani sorokat használ. A …999 által implikált végtelen sor nem konvergál a szokásos valós metrikában, de a p-adikus metrikában igen. Így használható a formula:
A harmadik módszert egy hetedikes találta ki, aki kételkedett tanárának határértékes bizonyításában, hogy (a valós számokon) 0,999… = 1, de a tízzel szorzásos bizonyítás arra inspirálta, hogy ugyanezt a másik irányba is elvégezze (a 10-adikus számok körében): ha x = …999, akkor 10x = …990, így 10x = x – 9, tehát x = –1.[41]
Utolsó kiterjesztésként felvetődik még, hogy ha 0,999… = 1, és …999 = –1, akkor …999,999… egyenlő-e nullával. Ennek az egyenlőségnek nincs értelme sem a valós számok, sem a p-adikus számok körében, de kiderül, hogy van értelme, és igaz is, ha bevezetjük a dupla tizedestörteket a valós számok reprezentálására, ahol mind a tizedesvessző előtt, mind azután végtelen sok jegy állhat.[43]
Volt egy csokoládé, amibe reklámcéllal szelvényt is csomagoltak. Tíz ilyen szelvényért egy újabb tábla csokoládét lehetett kapni. Kérdés: hány tábla csokoládét ér egy ilyen tábla csokoládé, teljes csomagolásban?
A csomagolásban van egy tábla csokoládé, és egy szelvény is, amiből tízért lehet egy csokoládét kapni. Tehát ez egy tized csokoládé, a hozzá járó tized szelvénnyel. Ezzel a gondolatmenettel a teljes csomagolásban levő csokoládé értéke
Másrészt a teljes csomagolásban levő csokoládé értéke egész pontosan :
A csomagolásban van egy csokoládé, ez 1. Elég azt igazolni, hogy egy szelvény 1/9 csokoládét ér. Kilenc szelvényhez kérve egy csokit, és utólag a tíz (9+1) szelvénnyel fizetve ez is belátható: szelvény nem maradt, és a csoki is ki lett fizetve.[45]
Az internet növekedésével a 0,999…-ről szóló viták kiszabadultak az osztálytermekből, és helyet foglaltak a hírcsoportokban és a fórumokban, még azokban is, amelyeknek elvben semmi közük sincs a matematikához. A sci.math hírcsoportban népszerű időtöltéssé vált a 0,999…-ről érvelni, és erre a kérdésre a hírcsoport FAQ (gyakori kérdések) fejezetében is kitérnek.[50] A FAQ foglalkozik az ⅓-dal, a 10-zel való szorzással, a határértékekkel és a Cauchy-sorozatokkal.
Az általános érdeklődéssel kísért The Straight Dope 2003-as kiadása az ⅓-dal és a határértékekkel foglalkozik, és a félreértésekre is kitér.
A bennünk levő alsóbbrendű főemlős még mindig ellenáll, mondván: a 0,999… nem egy szám, hanem egy sor. Ahhoz, hogy egy számot találjunk, meg kell állítanunk, és akkor már 0,999~ = 1.
Ez nonszensz.[51]
A The Straight Dope idéz egy vitát, amely egy olyan üzenőfalról indult, amely leginkább videojátékokról szólt. Ugyanezzel a hévvel a 0,999… kérdése olyan népszerűvé vált a Blizzard Entertainment első hét évében a Battle.net fórumain, hogy Mike Morhaime, a vállalat elnöke sajtótájékoztatót tartott 2004. április 1-jén, hogy 0,999… = 1.
Nagy örömmel tölt el bennünket, hogy egyszer s mindenkorra lezárhatjuk ezt a fejezetet. Rengeteg fejfájásnak és aggodalomnak voltunk tanúi, hogy vajon 0,999… egyenlő-e vagy nem egyenlő 1-gyel, és most büszkén állíthatjuk, hogy a következő bizonyíték véglegesen és meggyőzően tárgyalja a kérdést ügyfeleink számára.[52]
Blizzard ezután két bizonyítást is közölt, amelyek a határértékeken és a 10-zel való szorzáson alapultak.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.