शीर्ष प्रश्न
समयरेखा
चैट
परिप्रेक्ष्य
तरल गतिकी
विकिपीडिया से, मुक्त विश्वकोश
Remove ads
Remove ads
तरल गतिकी तरल यांत्रिकी की एक शाखा है। इसका प्रयोग गतिशील तरलों (द्रव तथा गैस) की प्रकृति तथा उस पर लगने वाले बलों के आकलन के लिए किया जाता है। जटिल तरल गतिकी के सवालों के हल के लिए गणकीय तरलगतिकी का प्रयोग होता है जिसमें संगणकों के सहारे तरल समीकरणों का संख्यात्मक हल किया जाता है।
तरलगतिकी का मूल समीकरण सातत्य समीकरण (equation of continuity) कहलाता है जो निम्न प्रकार से लिखा जाता है-
तरल गतिकी में प्रयुक्त गणितीय समीकरणों में नेवियर स्टोक्स समीकरण सबसे सामान्य (generalised) रूप है। इसके सरलीकृत रूपों को कई नामों से जाना जाता है। तरलों का बलों के प्रति आचरण उनके घनत्व, श्यानता तथा अन्य गुणों पर निर्भर करता है। यदि द्रव की श्यानता बहुत कम हो तो घर्षण बलों को नगण्य मानते हुए छोड़ा जा सकता है। इस प्रकार प्राप्त समीकरण यूलर का समीकरण कहलाता है जो इस प्रकार है-
Remove ads
बर्नूली का प्रमेय
सारांश
परिप्रेक्ष्य
जहाँ द्रव का स्थैतिक दाब, द्रव का घनत्व, [[गुरुत्वजनित त्वरण, ऊंचाई द्रव का वेग
यदि द्रव असंपीदनीय (uncompressible) हो तो इस समीकरण के साथ निम्नलिखित समीकरण भी लागू होता है। इसे सातत्य समीकरण (equation of continuity) कहते हैं।
जहाँ द्रव प्रवाह का क्षेत्रफल द्रव का वेग
Remove ads
इन्हें भी देखें
- द्रवस्थैतिकी
- तरल यांत्रिकी
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads