Remove ads
विकिपीडिया से, मुक्त विश्वकोश
नेवियर-स्टोक्स समीकरण तरल यांत्रिकी के सबसे अधिक उपयोगी समीकरणों में से एक है। यह श्यान (viscous) तरल पदार्थों (द्रव एवं गैस, दोनों) की गति को मॉडल करता है। यह समीकरण न्यूटन के गति के द्वितीय नियम को तरल की गति पर लागू करने से प्राप्त होता है।
नेवियर-स्टोक्स समीकरण अत्यन्त उपयोगी हैं क्योंकि ये शैक्षिक तथा अर्थशास्त्रीय महत्व वाली बहुत सी भौतिक घटनाओं का सम्यक मॉडल प्रस्तुत करने में सक्षम हैं (या उनका गणितीय वर्णन प्रस्तुत करते हैं)। इनके उपयोग के कुछ उदाहरण इस प्रकार हैं:
किसी जड़ सन्दर्भ तन्त्र (inertial frame of reference) में नेवियर-स्टोक्स समीकरण का सामान्यतम् रूप इस प्रकार है:
यहाँ प्रवाह का वेग है; तरल का घनत्व है; p दाब है; deviatoric stress tensor है; तरल की इकाई आयतन पर लगने वाला देह बल (body force) है ; डेल् (del) ऑपरेटर है।
उपरोक्त समीकरण वस्तुतः किसी तरल के लिये संवेग संरक्षण का नियम को ही अभिव्यक्त करता है। यह किसी सतत माध्यम (continuum) में न्यूटन की गति के द्वितीय नियम का एक अनुप्रयोग मात्र ही है। यह समीकरण प्रायः इस रूप में भी लिखा जाता है:
प्रांटल ने १९०४ में सीमावर्ती तहों में हो रही गतिविधियों की गणितीय पड़ताल तो की पर उसके कोई ५० साल तक इस दिशा में कोई आशाजनक प्रगति नहीं हुई। बीसवीं सदी में तो तरल गति को हल करने की दिशा में सैद्धांतिक विकास अधिक नहीं हुआ पर इसके गणितीय सांख्यिक हल के लिए सदी के उत्तरार्ध में शोधकर्ताओं को बहुत सफलता मिली। इसके तहत समीकरणों को उनके जटिल रूप में बिना अधिक सरलीकृत किये तथा उनके वास्तविक जटिल ज्यामितीय क्षेत्र में हल करना संभव हो सका। इनमें से पटंकर जैसे शोधकर्ताओं का बहुत योगदान रहा। कुछ गणितीय विधियों के नाम इस प्रकार हैं:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.