Remove ads
विकिपीडिया से, मुक्त विश्वकोश
पराश्रव्य शब्द उन ध्वनि तरंगों के लिए उपयोग में लाया जाता है जिसकी आवृत्ति इतनी अधिक होती है कि वह मनुष्य के कानों को सुनाई नहीं देती। साधारणतया मानव श्रवणशक्ति का परास २० से लेकर २०,००० कंपन प्रति सेकंड तक होता है। इसलिए २०,००० से अधिक आवृत्तिवाली ध्वनि को पराश्रव्य कहते हैं। क्योंकि मोटे तौर पर ध्वनि का वेग गैस में ३३० मीटर प्रति सें., द्रव में १,२०० मी. प्रति सें. तथा ठोस में ४,००० मी. प्रति से. होता है, अतएव पराश्रव्य ध्वनि का तरंगदैर्घ्य साधारणतया १० - ४ सेंमी. होता है। इसकी सूक्ष्मता प्रकाश के तरंगदैर्घ्य के तुल्य है। अपनी सूक्ष्मता के ही कारण ये तरंगें उद्योग-धंधों तथा अन्वेषण कार्यों में अति उपयुक्त सिद्ध हुई हैं और आजकल इनका महत्व अत्यधिक बढ़ गया है।
नीचे के चित्र में अपश्रव्य (infrasound), श्रव्य (audible) और पराश्रव्य (ultrasound) तरंगें और उनकी आवृत्ति का परास (रेंज) दिखाया गया है :
इसकी निम्नलिखित विधियाँ हैं :
१८९९ ई. में कोनिंग ने छोटे छोटे स्वरित्रों द्वारा ९०,००० कंपन प्रति सें., तक की पराश्रव्य तरंगें उत्पन्न कीं। इडेमान ने गाल्टन सीटी को बनाया, जिसके द्वारा वह एक निश्चित आयामवाले १,००,००० कंपन प्रति से. उत्पन्न करने में सफल हुआ। एक तुंड में से हवा फूँकी जाती है। हवा की यह धारा एकदीर्घ छिद्र में से बहकर एक क्षुरधार से टकराकर पराश्रव्य कंपन पैदा करती है। गैस-धारा जनित्र द्वारा हार्टमान ने अधिक ऊर्जावाली पराश्रव्यध्वनि पैदा की। हॉफमान ने काच की छड़ को उसकी लंबाई की समांतर दिशा में कंपित कर ३३,००० कंपनवाली अधिक ऊर्जा की पराश्रव्य ध्वनि उत्पन्न की।
अब इनका केवल ऐतिहासिक महत्व है। अटबर्ग ने स्फुलिंग-अंतराल (spark gap) द्वारा ३,००,००० आवृत्तिवाली पराश्रव्य ध्वनि पैदा की, किंतु यह ध्वनि कई भिन्न भिन्न आवृत्तियों का मिश्रण होती है और इनका आयाम भी अनिश्चित होता है।
यदि लोहचुंबकीय (ferromagnetic) पदार्थ की छड़ अथवा नली को उसकी लंबाई के समांतर किसी चुंबकीय क्षेत्र में रखा जाए तो आण्विक पुनर्व्यवस्था के कारण उसकी लंबाई में परिवर्तन हो जाता है। इस घटना को चुंबकीय आकारांतर कहते हैं। यह अनुसंधान जूल ने किया था। लंबाई का यह परिवर्तन चुंबकीय बलक्षेत्र की दिशा पर निर्भर नहीं है। यदि कोई लोहचुंबकीय पदार्थ प्रत्यावर्ती चुंबकीय क्षेत्र पर रखा जाए तो वह अपनी स्वाभाविक अथवा अधिस्वर आवृत्ति से कंपित होकर पराश्रव्य ध्वनि उत्पन्न करेगा।
चुंबकीय शैथिल्य (hysterisis) के कारण विद्युच्चुंबकीय ऊर्जा का पराश्रव्य ऊर्जा में परिवर्तन अधिक अच्छा नहीं होता है। साथ ही, इस विधि में पदार्थ को वलय के रूप न ले सकने के कारण अधिकतम आवृत्तिवाली पराश्रव्य ध्वनि उत्पन्न नहीं की जा सकती।
विंसेंट और पीअर्स, दोनों में चुंबकीय अकारांतर द्वारा पराश्रव्य कंपन पैदा करने के लिए विद्युतीय परिपथ बनाए। यह परिपथ चुंबकीय आकारांतर के व्युत्क्रम प्रभाव के कारण, स्वत: उत्तेजित विद्युतीय दोलन उत्पन्न करता है, क्योंकि छड़ की लंबाई की प्रत्यास्थ घट बढ़ चुंबकन में परिवर्तन कर देती है और इससे प्रेरित विद्युद्वाहक बल ग्रिड के द्वारा धनाग्र की धारा को नियंत्रित करता है।
इस विधि का मुख्य लाभ इसकी सादगी एवं सस्तेपन में है तथा इसमें त्रुटि है ताप पर निर्भर रहना और आवृत्ति का अधिक न रहना।
इस विधि से अधिकतम आवृत्ति २०० किलोहर्ट्ज तक उत्पन्न की जा सकती है।
सन् १८८० में पी. और पी.जे. क्यूरी ने बताया कि यदि सममिति रहित स्फटिकों या क्रिस्टलों के किन्हीं विशेष अक्षों पर दबाव लगाया जाए तो उनके दो तलों पर विजातीय विद्युदावेश उत्पन्न होते हैं। कुछ दिनों बाद इन्हीं दो भाइयों ने इससे विपरीत प्रभाव का भी आविष्कार किया, अर्थात् यह प्रमाणित किया कि बल लगाने से इन क्रिस्टलों की लंबाई में परिवर्तन होता है। इस घटना को दाब-विद्युत्-प्रभाव कहते हैं। सन् १९१७ ई. लैंजेविन ने क्वार्ट्ज़ क्रिस्टल को उसकी स्वाभाविक आवृत्ति से कंपित करने के लिए एक समस्वरित विद्युत् परिपथ के द्वारा उसे उत्तेजित किया। यदि विद्युत् परिपथ की आवृत्ति क्रिस्टल की आवृत्ति के बराबर हो, जो क्रिस्टल अनुनादित कंपन करने लगता है। क्रिस्टल अपनी स्वाभाविक आवृत्ति की अधिस्वरित आवृत्ति तथा निश्चित आयामवाली पराश्रव्य ध्वनि उत्पन्न करता है। पराश्रव्य ध्वनि उत्पन्न करने की यही अर्वाचीन विधि है।
क्वार्ट्ज़ के अतिरिक्त टूर्मैलिन, टार्टरिक अम्ल, रोशेल लवण, बेरियम टाइटैनेट इत्यादि का भी दोलक बनाने में उपयोग होता है। उपयुक्त आकार के क्रिस्टलों से या तो उनकी स्वाभाविक आवृत्ति, अथवा विषय संनादी (harmonics), उत्पन्न करके २व् १०४ से लेकर २व् १०८ तक की आवृत्तिवाली पराश्रव्य ध्वनि उत्पन्न की जाती है।
हार्टले का विद्युत् परिपथ क्रिस्टल कंपित किया जाता है। परिपथ के संधारित्र के मान को सम्ांजित कर समस्वरित किया जाता है। इस परिपथ के अतिरिक्त और भी अन्य परिपथों का विभिन्न कार्यों के लिए पराश्रव्य ध्वनि उत्पन्न करने में उपयोग किया जाता है।
क्रिस्टलों को काम में लाने से पूर्व विशेष रीति से काटा जाता है और उनको प्रयोग के लिए विशेष रीति से रखा जाता है।
पराश्रव्य ध्वनि के मुख्यत: चार प्रकार के परिचायक होते हैं :
जब गैस माध्यम में बिलकुल हलके ठोस, अथवा द्रव, के कण छोड़े जाते हैं तब वे पराश्रव्य ध्वनि के द्वारा अपने अवस्थितित्व के अनुसार चालित होते हैं। उनकी गति के अध्ययन से पराश्रव्य ध्वनि का परिचय प्राप्त होता है।
ऐंठन लोलक अथवा विकिरणमापी (radiometer) से भी पराश्रव्य तरंगों का ज्ञान होता है। एक विशेष यंत्र के मंडलक पर ये तरंगें गिरकर, उसपर दाब डालकर उसे घुमाती हैं। मंडलक का घूमना उसके आलंबनसूत्र में लगे दर्पण के द्वारा नापा जाता है।
यदि पराश्रव्य तरंगें अति सूक्ष्म न हों तो कुंट की नली में अग्रगामी तरंगें बनाकर लाइकोपोडियम चूर्ण द्वारा उनका प्रेक्षण किया जाता है।
ध्वनिग्राही दीपशिखा (sensitive flame) द्वारा ध्वनि की तरंगों के ही समान इन तरंगों का भी परिचय प्राप्त किया जाता है।
ये तरंगें तारों पर गिरकर क्रमश: उष्मा अथवा शीत पैदा करती हैं। ताप के इस परिवर्तन से तार का विद्युत् प्रतिरोध बदलता है। इस गुण का भी उपयोग इन तरंगों के बारे में ज्ञान प्राप्त करने में होता है।
पराश्रव्य तरंगों से जो अप्रगामी तरंगें बनती हैं, उनसे माध्यम का वर्तनांक कहीं बढ़ जाता है और कहीं घट जाता है। इस प्रकार के माध्यम में से प्रकाश के जाने पर रेखांकन (striation) हो जाता है। इन रेखाओं के ज्ञान से इन तरंगों का परिचय होता है। प्रगामी तरंगें भी स्ट्रोबोस्कोपी प्रदीपन (stroboscopic illumination) के द्वारा इसी विधि से व्यक्त हो जाती है।
बेरियम टाइटेनेट के क्रिस्टल के दाबविद्युत् गुण का उपयोग कर उससे माइक्रोफोन बनाया जाता है और उसके द्वारा इन तरंगों का अस्तित्व मालूम किया जाता है।
1. पराश्रव्य आवृत्तिदर्शी - पराश्रव्य तरंगों द्वारा माध्यम में जो ग्रेटिंग (grating) बनता है, उसमें से जानेवाले एकवर्ण प्रकाश की तीव्रता विभिन्न दिशाओं में विभिन्न परिमाण की हो जाती है। इस तीव्रता वितरण के द्वारा आवृत्ति की नाप हो जाती है।
2. दूरवीक्षण (Television) - दूरवीक्षण की स्कोफोनी व्यवस्था में इस ध्वनि का उपयोग होता है।
3. पदार्थों का परीक्षण - साधारणतया शुद्ध धातुओं में पराश्रव्य तरंगों का संचरण विकारहीन होता है, किंतु उनमें यदि कहीं टूट फूट हो, अथवा सम्मांगिता न हो, तो वहाँ पर इन तरंगों का परावर्तन अथवा अवशोषण हो जाता है। इस प्रकार संचरण में गड़बड़ी होने से त्रुटि का पता चल जाता है। इसी विधि का उपयोग मस्तिष्क के ट्यूमर, अथवा कैंसर, जैसी बीमारी का पता लगाने में भी होने लगा है।
4. प्रतिध्वनि परासन - इनसे प्रतिध्वनि परासन का काम भी लिया जाता है। पनडुब्बियों द्वारा कुहरे एवं धुंध में प्लावी हिमशैल का ज्ञान इसी के द्वारा प्राप्त किया जाता है। समुद्र की गहराई की तथा अन्य जहाजों की दूरी की नाप भी इसी विधि से होती है।
5. व्यासारण एवं कलिलीकरण - पराश्रव्य तरंगों द्वारा एक दूसरे में पन घुलनेवाले द्रवों का पायस बन जाता है। यहाँ तक कि इन तरंगों के प्रभाव से धातु भी द्रव में अपना पायस बनाती हैं। फोटोग्राफी के काम में आनेवाला चाँदी का हैलाइड भी इसी विधि से बनता है। इन तरंगों के प्रभाव से उच्चबहुलक (polymer) अणु टूट जाते हैं और इस प्रकार स्टार्च से शर्करा बनती है। पराश्रव्य ध्वनि की पायसीकरण क्रिया का उपयोग अच्छी धातु बनाने के काम में भी होता है। लोहे में नाइट्रोजन का निवेशन भी इससे सुगमतापूर्वक होता है।
6. अपक्षेपण (coagulating) क्रिया - गैस माध्यम में ठोस एवं द्रव के छोटे छोटे कण पराश्रव्य ध्वनि से अपक्षेपित होकर जमा हो जाते हैं। इस प्रकार बड़े नगरों के कल कारखानों से निकलनेवाला हानिकारक धुआँ नगर के बाहर जाने से रोका जाता है। ठीक इसी प्रकार कुहरा तथा धुंध भी दूर किए जाते हैं।
7. रासायनिक प्रभाव - कई रासायनिक अभिक्रियाओं का वेग इन तंरगों के कारण बढ़ जाता है। लंबी श्रृंखला वाले बहुलकों को इससे तोड़ा भी जा सकता है।
8. उष्मीय प्रभाव - पराश्रव्य तरंगों द्वारा उष्मा का उपयोग डायाथर्मी (diathermy) में होता है। इससे हड्डी की मज्जा को बिना हड्डी पर प्रभाव डाले गरम किया जाता है।
9. जैविक प्रभाव - छोटे प्राणी, जैसे मछली, मेढक, प्रोटोज़ोआ इत्यादि इन तरंगों द्वारा मर जाते है। जीवाणुओं में इनके प्रभाव से परिवर्तन हो जाता है। इनसे दूध को जीवाणुरहित कर सकते है। इससे मांस को अधिक दिनों तक ताजा रख सकते हैं तथा शराब का जीर्णन बढ़ाया जा सकता है।
10. कुछ अन्य उपयोग - पराश्रव्य ध्वनि से हीरे को काटने एवं पेषण का काम होता है। कुत्तों को बुलाने के लिए ऐसी सीटियाँ हैं जिन्हें उनकी पराश्रव्य ध्वनि के कारण हम सुन नहीं पाते हैं।
इस प्रकार इन विविध उपयोगों के कारण इस आणविक युग में भी पराश्रव्य ध्वनिकी का भौतिक विज्ञान में महत्वपूर्ण स्थान है।
{
अल्ट्रासोनिक परीक्षा के बहुमत त्वचा की सतह पर एक ट्रांसड्यूसर चलाने के द्वारा बाहर से प्रदर्शन कर रहे हैं। आम तौर पर एक जेल त्वचा पर लगाया जाता है जिस पर ट्रांसड्यूसर परीक्षा के दौरान सरकता हुआ चलता है जेल ट्रांसड्यूसर और त्वचा के बीच उतपनन हवा के बुलबुलों को बनाने से रोक कर अल्ट्रासोनिक संकेत दृढ़ता परदान करने में मदद करता है। कुछ नैदानिक परीक्षण में शरीर के भीतर परवेश करने की आवश्यकताहोती है। उदाहरण के लिए, एक पार इकोकार्डियोग्राम के दौरान एक विशेष ट्रांसड्यूसर घेघा में बेहतर छवि के लिए दिल रखा गया है। ट्रांस गुदा परीक्षा एक ट्रांसड्यूसर एक आदमी के मलाशय में डाला जा करने की आवश्यकता प्रोस्टेट की छवियों को प्राप्त करने के लिए। अल्ट्रासाउंड गर्भावस्था के शुरुआती सप्ताह के दौरान एक महिला के अंडाशय और गर्भाशय या एक भ्रूण के की छवियों को प्रदान करने के लिए इस्तेमाल कर रहे हैं।
मेडिकल सोनोग्राफी (अल्ट्रासोनोग्राफी) एक अल्ट्रासाउंड-आधारित नैदानिक चिकित्सा इमेजिंग तकनीक है, जिसका उपयोग वास्तविक समय टोमोग्राफिक छवियों के साथ उनके आकार, संरचना और किसी भी रोग संबंधी घावों को पकड़ने के लिए मांसपेशियों, कण्डरा और कई आंतरिक अंगों की कल्पना करने के लिए किया जाता है। कम से कम 50 वर्षों के लिए मानव शरीर की छवि के लिए रेडियोलॉजिस्ट और सोनोग्राफर्स द्वारा अल्ट्रासाउंड का उपयोग किया गया है और यह व्यापक रूप से इस्तेमाल किया जाने वाला नैदानिक उपकरण बन गया है। प्रौद्योगिकी अपेक्षाकृत सस्ती और पोर्टेबल है, खासकर जब अन्य तकनीकों के साथ तुलना की जाती है, जैसे चुंबकीय अनुनाद इमेजिंग (एमआरआई) और कंप्यूटेड टोमोग्राफी (सीटी)। नियमित और आपातकालीन प्रसव पूर्व देखभाल के दौरान भ्रूण की कल्पना करने के लिए भी अल्ट्रासाउंड का उपयोग किया जाता है। गर्भावस्था के दौरान उपयोग किए जाने वाले ऐसे नैदानिक अनुप्रयोगों को प्रसूति सोनोग्राफी कहा जाता है। जैसा कि वर्तमान में चिकित्सा क्षेत्र में लागू किया गया है, ठीक से किया गया अल्ट्रासाउंड रोगी को कोई ज्ञात जोखिम नहीं देता है। [२५] सोनोग्राफी आयनीकृत विकिरण का उपयोग नहीं करता है, और इमेजिंग के लिए उपयोग किए जाने वाले शक्ति का स्तर ऊतक में प्रतिकूल ताप या दबाव प्रभाव पैदा करने के लिए बहुत कम है। [२६] [२ ion] हालांकि, नैदानिक तीव्रता पर अल्ट्रासाउंड के जोखिम के कारण दीर्घकालिक प्रभाव अभी भी अज्ञात हैं, [28] वर्तमान में अधिकांश डॉक्टरों को लगता है कि रोगियों को होने वाले लाभ जोखिमों से अधिक हैं। [२ ९] अल्रा (यथोचित रूप से कम उचित) सिद्धांत को एक अल्ट्रासाउंड परीक्षा के लिए वकालत की गई है - यानी स्कैनिंग समय और शक्ति सेटिंग्स को यथासंभव कम रखना, लेकिन नैदानिक इमेजिंग के अनुरूप - और उस सिद्धांत द्वारा गैर-चिकित्सीय उपयोग, जो कि परिभाषा है आवश्यक नहीं, सक्रिय रूप से हतोत्साहित किया जाता है। [३०]
आघात और प्राथमिक चिकित्सा के मामलों में अल्ट्रासाउंड का भी तेजी से उपयोग किया जा रहा है, जिसमें आपातकालीन अल्ट्रासाउंड सबसे EMT प्रतिक्रिया टीमों का एक मुख्य केंद्र बन जाता है। इसके अलावा, अल्ट्रासाउंड का उपयोग दूरस्थ निदान के मामलों में किया जाता है, जहां टेलीकांस्लेशन की आवश्यकता होती है, जैसे कि अंतरिक्ष में वैज्ञानिक प्रयोग या मोबाइल स्पोर्ट्स टीम निदान। [३१]
रेडियोलॉजीइन्फो के अनुसार, [32] अल्ट्रासाउंड पेल्विक असामान्यता का पता लगाने में उपयोगी होते हैं और इसमें महिलाओं में उदर (ट्रांसअबाउटम) अल्ट्रासाउंड, योनि (ट्रांसवैजाइनल या एंडोवैजिनल) अल्ट्रासाउंड नामक तकनीकों को शामिल किया जा सकता है और पुरुषों में रेक्टल (ट्रांसरेक्टल) अल्ट्रासाउंड भी शामिल है।
क्योंकि अल्ट्रासोनोग्राफी उच्च आवृत्ति ध्वनि तरंगों, और एक्स रे या नहीं विकिरण के अन्य रूपों का उपयोग करता है, वहाँ बहुत कुछ इसके उपयोग के साथ जुड़े जोखिम भी हैं। ध्वनि तरंगों या तो वापस ट्रांसड्यूसर को परिलक्षित होते हैं, या शरीर के ऊतकों उन्हें अवशोषित और वे गर्मी के रूप में फैलने। वहाँ एक मामूली एक परिणाम के रूप में शरीर में गर्मी में वृद्धि हो सकती है, लेकिन इस गर्मी का कोई नकारात्मक प्रभाव प्रलेखित किया गया है।
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.