शीर्ष प्रश्न
समयरेखा
चैट
परिप्रेक्ष्य

संख्यात्मक समाकलन

विकिपीडिया से, मुक्त विश्वकोश

संख्यात्मक समाकलन
Remove ads
Remove ads

संख्यात्मक विश्लेषण में किसी निश्चित समाकल का संख्यात्मक मान निकालने की कलनविधियाँ संख्यात्मक समाकलन (numerical integration) के अन्तर्गत आतीं हैं। इसके वितार के रूप में, कभी-कभी अवकलल समीकरणों के संख्यात्मक हल को भी 'संख्यात्मक समाकलन' का नाम दे दिया जाता है।

Thumb
संख्यात्मक समाकलन से आशय एक संख्यात्मक मान निकालने से है जो के सन्निकट हो।

संख्यात्मक समाकलन की मूल समस्या निम्नलिखित प्रकार के निश्चित समाकलों का सन्निकट संख्यात्मक हल निकालना है:

संख्यात्मक समाकलन का उपयोग आरम्भिक मान वाले अवकल समीकरणों के लिए भी प्रयुक्त होता है, अर्थात्

दिए होने पर y(b) का मान निकालना भी समाकल निकालने के जैसा ही है।

यदि f(x) a, b के बीच किसी बिन्दु पर सिंगुलर न हो तथा समाकलन की सीमाएँ सीमित हों तो इसके संख्यात्मक समाकल का मान निकालने की बहुत सी विधियाँ मौजूद हैं। यदि समाकल की सीमाएँ सीमित न हों तो भी चर परिवर्तन (variable transformation) का उपयोग करके सीमाओं को सीमित किया जा सकता है और समाकल का संख्यात्मक मान निकाला जा सकता है। (नीचे देखें)

Remove ads

संख्यात्मक समाकल की आवश्यकता एवं महत्व

संख्यात्मक समाकल की आवश्यकता कई कारणों से पड़ती है। सबसे बड़ा कारण यह है कि बहुत से फलनों का वैश्लेषिक समाकल निकालना असम्भव है या बहुत कठिन है। इसके विपरीत संख्यात्मक समाकलन की विशेषता यह है कि एक ही कलन विधि से सभी प्रकार के फलनों का निश्चित समाकल निकाला जा सकता है जो कम्प्यूटर प्रोग्रामिंग की दृष्टि से अत्यन्त उपयुक्त है।

विधियाँ

सारांश
परिप्रेक्ष्य

आयत विधि या मध्यबिन्दु विधि

Thumb
जितने अधिक आयत बनाए जाएंगे, संख्यात्मक समाकल का मान उतना ही अधिक शुद्ध होगा।

यह सबसे सरलीकृत विधि है। यह 'खुली विधि' कहलाती है क्योंकि इसमें सीमान्त बिन्दुओं [a,b] पर फलन के मान का उपयोग नहीं किया जाता है। ओपेन इसके अनुसार,

Thumb
आयत विधि से निश्चित समाकल का संख्यात्मक मान निकालना

समलम्ब चतुर्भुज विधि (ट्रैपीजॉयडल विधि)

यह एक 'बन्द विधि' है।

Thumb
समलम्ब चतुर्भुज विधि (ट्रैपीजॉयडल विधि) से निश्चित समाकल का संख्यात्मक मान निकालना

सिम्प्सन की विधि

यह भी एक 'बन्द विधि' है।

.
Thumb
सिंप्सन विधि से निश्चित समाकल का संख्यात्मक मान निकालना
Remove ads

उदाहरण

Thumb
केसरिया रंग में रंगा हुआ क्षेत्र आयत विधि द्वारा फलन के निश्चित समाकल का सन्निकट मान दर्शा रहा है।
Thumb
केसरिया रंग में रंगा हुआ क्षेत्र समलम्ब चतुर्भुज विधि द्वारा फलन के निश्चित समाकल का सन्निकट मान दर्शा रहा है
Thumb
केसरिया रंग में रंगा हुआ क्षेत्र सिम्प्सन विधि द्वारा फलन के निश्चित समाकल का सन्निकट मान दर्शा रहा है





अधिक जानकारी , ...

[1] [2]

Remove ads

अनन्त अन्तराल के लिए समाकल

सारांश
परिप्रेक्ष्य

यदि दिए हुए निश्चित समाकल का अवकाश अनन्त है या अर्ध-अनन्त है तो इसका संख्यात्मक मान निकालने के लिए मानक विधियों का सीधे प्रयोग नहीं किया जा सकता क्योंकि सम्बन्धित गणना भी अनन्त हो जाएगी।

इसके लिए कई विधियाँ मौजूद हैं। जब सम्पूर्ण वास्तविक रेखा पर समाकल निकालना हो तो इसके लिए गाउस-हर्माइट तकनीक उपयुक्त है। जब धनात्मक वास्तविक रेखा पर समाकल निकालना हो तो इसके लिए गाउस-लागुअर समाकल (Gauss-Laguerre quadrature) का प्रयोग किया जा सकता है।[3]

चरों का परिवर्तन करके तथा अनन्त सीमाओं को सीमित सीमाओं में बदलकर निम्नलिखित प्रकार से समाकल निकाला जा सकता है।

अर्ध-अनन्त (semi-infinite) अवकाश के लिए निम्नलिखित चर-परिवर्तन उपयोगी है:

Remove ads

सन्दर्भ

Loading content...

इन्हें भी देखें

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads