מוויקיפדיה, האנציקלופדיה החופשית
במתמטיקה, משפט גלפונד-שניידר הוא משפט הקובע תחת אילו תנאים העלאת מספר אלגברי בחזקת מספר אלגברי נותנת מספר טרנסצנדנטי. המשפט עונה בחיוב על הבעיה השביעית של הילברט. המשפט הוכח על ידי המתמטיקאי הרוסי אלכסנדר גלפונד בשנת 1934 ובאופן בלתי תלוי על ידי המתמטיקאי הגרמני תאודור שניידר בשנת 1935.
המשפט קובע כי אם מספרים אלגבריים כך ש-, ו- אי-רציונלי, אז טרנסצנדנטי.
משפט גלפונד-שניידר משמש להוכחת הטרנסצנדנטיות של קבוצה רחבה של מספרים. דוגמאות מפורסמות כוללות את:
Seamless Wikipedia browsing. On steroids.