קבוצת בורל
מוויקיפדיה, האנציקלופדיה החופשית
מוויקיפדיה, האנציקלופדיה החופשית
קבוצת בורל היא קבוצה השייכת לסיגמא-אלגברה של בורל של מרחב טופולוגי נתון. סיגמא-אלגברה זו נוצרת על ידי הקבוצות הפתוחות שבמרחב. לעיתים מגדירים סיגמא-אלגברה זו להיות נוצרת על ידי הקבוצות הקומפקטיות. באופן כללי זו אינה הגדרה שקולה, אבל במרחב מטרי ספרבילי שהוא קומפקטי מקומי שתי ההגדרות מזדהות. המונח קרוי על שמו של אמיל בורל.
הדוגמה המפורסמת ביותר היא הסיגמא-אלגברה של הישר הממשי, הנוצרת על ידי הקטעים הפתוחים.
ניתן להגדיר את סיגמא-אלגברת בורל בישר הממשי באופן קונסטרוקטיבי באמצעות אינדוקציה טרנספיניטית. מגדירים את כקבוצת כל הקבוצות שהן פתוחות או סגורות. לכל סודר עוקב מגדירים את כקבוצת כל האיחודים בני המנייה של איברי , או משלימים של איחודים כאלה. לכל סודר גבולי מגדירים . אלגברת בורל היא הקבוצה , כאשר הוא הסודר הקטן ביותר שאינו בן מנייה.[1]
כל קבוצת בורל היא קבוצה מדידה לפי מידת לבג (משמע אפשר להתאים לה "אורך"). מידת לבג כשהיא מצומצמת לאלגברת בורל נקראת מידת בורל.
מהבנייה הקונסטרוקטיבית של קבוצות בורל נובע שיש (עוצמת הרצף) קבוצות בורל. הרבה פחות מאשר הקבוצות המדידות לבג, הכוללות את קבוצות בורל, ומהן יש .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.