triángulo cos tres lados iguais From Wikipedia, the free encyclopedia
En xeometría, un triángulo equilátero é un triángulo no que os tres lados teñen a mesma lonxitude. Na xeometría euclidiana, un triángulo equilátero tamén ten os tres ángulos internos iguais entre si e son cada un de 60°. Tamén é un polígono regular, polo que tamén se denomina triángulo regular.
Indicando a lonxitude común dos lados do triángulo equilátero como , podemos determinar mediante o teorema de Pitágoras que:
Denotando o raio da circunferencia circunscrita como R, podemos determinar mediante trigonometría que:
Moitas destas cantidades teñen relacións sinxelas coa altura ("h") de cada vértice do lado oposto:
Nun triángulo equilátero coinciden as alturas, as mediatrices dos ángulos, as mediatrices perpendiculares e as medianas a cada lado.
Un triángulo que ten os lados , , , semiperímetro , área , exraios , , (tanxentes a , , respectivamente), e onde e son os raios da circunferencia circundante e da circunferencia inscrita respectivamente, é equilátero se e só se algunha das afirmacións das nove categorías seguintes é certa. Así, estas son propiedades exclusivas dos triángulos equiláteros, e saber que calquera delas é verdadeira implica directamente que temos un triángulo equilátero.
Tres tipos de cevianas coinciden, e son iguais, para (e só para) triángulos equiláteros: [7]
Todo centro do triángulo dun triángulo equilátero coincide co seu centroide, o que implica que o triángulo equilátero é o único triángulo sen liña de Euler que conecte algúns dos centros. Para algúns pares de centros de triángulos, o feito de que coincidan é suficiente para garantir que o triángulo sexa equilátero. En particular:
O teorema do trisector de Morley afirma que, en calquera triángulo, os tres puntos de intersección dos trisectores angulares adxacentes forman un triángulo equilátero.
O teorema de Napoleón afirma que, se se constrúen triángulos equiláteros nos lados de calquera triángulo, xa sexa todos cara a fóra ou todos cara a dentro, os centros deses triángulos equiláteros forman un triángulo equilátero.
Unha versión da desigualdade isoperimétrica para triángulos indica que o triángulo de maior área entre todos os que teñen un perímetro dado é equilátero.[10]
O teorema de Viviani afirma que, para calquera punto interior nun triángulo equilátero con distancias , , e dos lados e da altura , independente da localización de .[11]
O teorema de Pompeiu afirma que, se é un punto arbitrario no plano dun triángulo equilátero mais non na súa circunferencia circunscrita, entón existe un triángulo con lados de lonxitudes , , e . É dicir, , , e satisfán a desigualdade triangular de que a suma de dous calquera deles é maior que o terceiro. Se se atopa na circunferencia circunscrita, entón a suma dos dous máis pequenos é igual á máis longa e o triángulo dexenera nunha liña, este caso coñécese como teorema de Van Schooten.
Desigualdade de Erdős-Mordell: Dado un punto P no interior dun triángulo equilátero, a relación entre a suma das súas distancias aos vértices e a suma das súas distancias aos lados é maior ou igual a 2, mantendo a igualdade cando P é o centroide. En ningún outro triángulo hai un punto para o que esta razón sexa tan pequena como 2.
A proba de que a figura resultante é un triángulo equilátero é a primeira proposición do Libro I dos Elementos de Euclides .
En tres dimensións, os triángulos equiláteros forman caras de poliedros regulares e uniformes. Tres dos cinco sólidos platónicos están compostos por triángulos equiláteros: tetraedro, octaedro e icosaedro .[12]:p.238 :p.238En particular, o tetraedro, que ten catro triángulos equiláteros para as caras, pódese considerar o análogo tridimensional do triángulo. Todos os sólidos platónicos poden inscribir tetraedros, así como estar inscritos dentro de tetraedros. Os triángulos equiláteros tamén forman antiprismas uniformes así como antiprismas de estrelas uniformes no espazo tridimensional.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.