lei da constancia das frecuencias alélicas e xenotípicas nunha poboación From Wikipedia, the free encyclopedia
A lei de Hardy–Weinberg, tamén chamada principio de Hardy–Weinberg ou equilibrio de Hardy–Weinberg di que as frecuencias alélicas e xenotípicas nunha poboación permanecerán constantes de xeración en xeración en ausencia doutras influencias evolutivas. Estas influencias inclúen a selección intersexual, a mutación, a selección, deriva xenética, fluxo xénico e impulso meiótico (meiotic drive). Dado que polo menos unha ou máis destas influencias están tipicamente presentes nunha poboación real, a lei de Hardy–Weinberg describe máis ben unha condición ideal con respecto á cal poden analizarse os efectos destas influencias.
Este artigo contén varias ligazóns externas e/ou bibliografía ao fin da páxina, mais poucas ou ningunha referencia no corpo do texto. Por favor, mellora o artigo introducindo notas ao pé, citando as fontes. Podes ver exemplos de como se fai nestes artigos. |
No caso máis simple dun só locus con dous alelos denominados A e a con frecuencias e , respectivamente, as frecuencias xenotípicas esperadas son para os homocigotos AA, para os homocigotos aa, e para os heterocigotos Aa. As proporcións xenotípicas p2, 2pq, e q2 denomínanse proporcións de Hardy–Weinberg. Nótese que a suma de todas as frecuencias xenotípicas deste caso é a expansión binomial do cadrado da suma de p e q, e esta suma, que representa o total das posibilidades, debe ser igual a 1. Por tanto, . A solución realista desta ecuación é q = 1 − p.
Se a unión dos gametos para producir a seguinte xeración é aleatoria, pode demostrarse que a nova frecuencia satisfai que e . É dicir, as frecuencias alélicas son constantes entre xeracións.
Este principio recibe o seu nome por G. H. Hardy e Wilhelm Weinberg, que foron os primeiros que o demostraron matematicamente.
Unha descrición probabilística do principio de Hardy-Weinberg é que os alelos da seguinte xeración para calquera individuo se elixen de forma aleatoria e independentemente uns doutros. Consideremos dous alelos A e a con frecuencias na poboación de p e q, respectivamente. As distintas maneiras de formar novos xenotipos pódense derivar utilizando un cadro de Punnett, polo que a fracción en cada cela é igual ao produto das probabilidades da fila e a columna.
Femias | |||
---|---|---|---|
A (p) | a (q) | ||
Machos | A (p) | AA (p2) | Aa (pq) |
a (q) | Aa (pq) | aa (q2) |
As tres posibles frecuencias xenotípicas finais da descendencia son:
Estas frecuencias chámanse frecuencias (ou proporcións) de Hardy-Weinberg. Isto conséguese nunha xeración, e só cómpre supoñer un apareamento aleatorio nunha poboación de tamaño infinito.
Ás veces unha poboación créase xuntando machos e femias con distintas frecuencias alélicas. Nese caso, non se cumpre que se trate dunha soa poboación, pero será unha soa poboación na seguinte xeración, de maneira que a primeira xeración non estará en equilibrio de Hardy-Weinberg, pero as xeracións sucesivas si estarán en equilibrio de Hardy-Weinberg.
Un exemplo real da lei de Hardy-Weinberg pode ser o seguinte sobre a doenza metabólica hereditaria fenilcetonuria.[1]
Os nenos con fenilcetonuria non poden procesar a fenilalanina, un aminoácido das proteínas, polo que a fenilalanina se acumula no sangue causando danos cerebrais e retardo mental. Esta doenza é provocada por un xene recesivo que está en homocigose (aa). Se p é a frecuencia do alelo san e q a do alelo "defectuoso", podemos calcular a incidencia dos portadores da combinación aa.
Se realizamos un cruzamento de dous portadores Aa, nos que permanece oculto o xene recesivo, os xenotipos obtidos na seguinte xeración serán os seguintes:
A (p) | a (q) | |
A (p) | AA (p²) | Aa (pq) |
a (q) | Aa (pq) | aa (q²) |
Os tres genotipos AA : Aa : aa aparecen nunha relación p² : 2pq : q². Se as sumamos, obtemos a unidade:
p² + 2pq + q² = (p + q)² = 1.
A frecuencia dos xenotipos doentes de fenilcetonuria é dun 0,0001, un valor correspondiente a q². A frecuencia q do xene a será a raíz cadrada de 0,0001, é dicir, 0,01. A doenza ten unha incidencia de 1 de cada 10.000 individuos, pero a frecuencia do xene é 100 veces maior, de 1 de cada 100. Os xenes a encóntranse no par Aa cunha frecuencia
2pq = 2q(1 - q) = 2· 0,01·(1 - 0,01) = 0,0198.
Case un 2% dos individuos da poboación europea porta, por tanto, este xene no par Aa, o que dá unha idea do persistente que pode chegar a ser un xene recesivo manténdose agochado en heterocigose.
Cando non se cumpren as suposicións de Hardy-Weinberg poden haber desviacións dos valores esperados. O grao en que afecta isto á poboación depende das suposicións que son violadas.
As demais suposicións afectan ás frecuencias alélicas, mais non afectan por si mesmas ao apareamento aleatorio. Se unha poboación viola algunha destas, a poboación seguirá tendo proporcións de Hardy-Weinberg en cada xeración, pero as frecuencias alélicas cambiarán con esa forza.
Máis adiante explícase como afectan estas violacións ás probas estatísticas formais do equilibrio de Hardy-Weinberg.
Desafortunadamente, os incumprimentos das suposicións do principio de Hardy-Weinberg non significan que a poboación non cumprirá o equilibrio de Hardy-Weinberg. Por exemplo, a selección estabilizadora orixina unha poboación en equilibrio con proporcións de Hardy-Weinberg. Esta propiedade que enfronta á selección coa mutación é a base de moitas estimacións do ritmo de mutación (equilibrio mutación-selección).
Cando o xene A está ligado ao sexo, o sexo heterogamético (por exemplo, os machos dos mamíferos e as femiass das aves) só ten unha copia do xene (e chámase hemicigoto), mentres que o sexo homogamético (por exemplo, as mulleres) teñen dúas copias. As frecuencias xenotípicas en equilibrio son p e q para o sexo heterogamético pero p2, 2pq e q2 para o sexo homogamético.
Por exemplo, en humanos, o daltonismo é un carácter recesivo ligado ao cromosoma X. Nos homes (machos) europeos, o carácter afecta a 1 de cada 12 (q = 0,083), mentres que só afecta a 1 de cada 200 mulleres (0,005, que comparado con q2 = 0,0070 está moi próximo ás proporcións de Hardy-Weinberg).
Se unha poboación se xunta con outra, con machos e femias con distintas frecuencias alélicas, a frecuencia alélica da poboación masculina seguirá á da poboación feminina, porque todos reciben o seu cromosoma X da súa nai. A poboación converxe cara ao equilibrio moi rapidamente.
A derivación simple de arriba pode ser xeneralizada para máis de dous alelos e poliploidía.
Consideraremos unha frecuencia dun alelo extra, . O caso con dous alelos é a expansión binomial de , e o caso con tres alelos é a expresión trinomial de .
Máis xeralmente, consideremos os alelos A1, ... An dados polas frecuencias alélicas de a ;
dado para todos os homocigotos:
e para todos os heterocigotos:
O principio de Hardy-Weinberg tamén se pode xeneralizar para sistemas poliploides, é dicir, organismos que teñen máis de dúas copias de cada cromosoma. Consideremos de novo só dous alelos. O caso diploide é a expansión binomial de:
e, por tanto, o caso poliploide é a expansión binomial de:
onde c é a ploidía. Por exemplo, nun tetraploide c = 4:
Xenotipo | Frecuencia |
---|---|
Dependendo de se o organismo é un tetraploide 'verdadeiro' ou un anfidiploide (alotetraploide que contén o conxunto diploide de cromosomas de ambos os proxenitores) quedará determinado o tempo necesario para que a poboación alcance o equilibrio de Hardy-Weinberg.
A fórmula completamente xeneralizada é a expansión multinomial de :
O principio de Hardy-Weinberg pode aplicarse de dúas maneiras: ou ben se considera que unha poboación ten proporcións de Hardy-Weinberg, e nese caso poden calcularse as frecuencias xenotípicas, ou ben se as frecuencias xenotípicas dos tres xenotipos son coñecidas, pódense comprobar as desviacións que sexan estatisticamente significativas.
Supoñamos que os fenotipos de AA e Aa son indistinguibles, é dicir, existe unha dominancia completa. Supoñendo que o principio de Hardy-Weinberg se aplica á poboación, entón aínda se pode calcular q a partir de f(aa):
e p pódese calcular a partir de q. E tamén unha estimación de f(A) e f(Aa) derivadas de p2 e 2pq, respectivamente. Porén, hai que ter en conta que non se pode comprobar o equilibrio dunha poboación utilizando as probas de significación seguintes, porque esta se asume a priori.
A comprobación da desviación do principio de Hardy-Weinberg adoita realizarse utilizando a proba χ² de Pearson, utilizando as frecuencias xenotípicas observadas que se obtiveron dos datos e as frecuencias xenotípicas esperadas obtidas por medio do principio de Hardy-Weinberg. Para os sistemas nos que hai un gran número de alelos, isto pode ofrecer datos con moitos xenotipos baleiros posibles e pouca cantidade de xenotipos, porque a miúdo non hai suficientes individuos na mostra para representar axeitadamene todas as clases xenotípicas. Se este é o caso, entón a suposición asintótica da distribución khi-cadrado non se sosterá e pode ser necesario utilizar unha forma de proba exacta de Fisher, que require dunha computadora para a súa resolución.
Estes datos son de E.B. Ford (1971) sobre a avelaíña Callimorpha dominula, da que se contabilizaron os fenotipos dunha mostra da poboación. A distinción entre o xenotipo e o fenotipo considérase insignificante. A hipótese nula é que a poboación ten proporcións de Hardy-Weinberg, e a hipótese alternativa é que a poboación non ten proporcións de Hardy-Weinberg.
Xenotipo | Manchas brancas (AA) | Intermedia (Aa) | Poucas manchas (aa) | Total |
---|---|---|---|---|
Número | 1469 | 138 | 5 | 1612 |
Do que se poden calcular as frecuencias alélicas:
e
Polo que os valores esperados de Hardy-Weinberg son:
A proba χ² de Pearson establece que:
Hai 1 grao de liberdade (os graos de liberdade para a proba das proporcións de Hardy-Weinberg son o resultado de restar o número de fenotipos menos o número de alelos). O nivel de significatción para 1 grao de liberdade é 3,84, e como este valor de χ2 é menor, acéptase a hipótese nula que dicía que a poboación ten proporcións de Hardy-Weinberg.
A proba exacta de Fisher pode aplicarse para comprobar se existen proporcións de Hardy-Weinberg. Como a proba está condicionada polas frecuencias alélicas, p e q, o problema pode entenderse como a comprobación do número axeitado de heterocigotos. Desta forma, a hipótese das proporcións de Hardy-Weinberg queda violada se o número de heterocigotos é moi grande ou moi pequeno. As probabilidades condicionadas para o heterocigoto, dadas as frecuencias alélicas, deunas Emigh (1980) da seguinte forma
onde n11, n12 e n22 son os números observados para os tres xenotipos, AA, Aa e aa, respectivamente, e n1 é o número de alelos A, onde .
Un exemplo. Utilizando un dos exemplos de Emigh (1980), podemos considerar o caso en que n = 100 e p = 0,34. Na táboa 4 móstranse os heterocigotos observados posibles e o seu nivel de significación exacto.
Número de heterocigotos | Nivel de significación |
---|---|
0 | 0,000 |
2 | 0,000 |
4 | 0,000 |
6 | 0,000 |
8 | 0,000 |
10 | 0,000 |
12 | 0,000 |
14 | 0,000 |
16 | 0,000 |
18 | 0,001 |
20 | 0,007 |
22 | 0,034 |
34 | 0,067 |
24 | 0,151 |
32 | 0,291 |
26 | 0,474 |
30 | 0,730 |
28 | 1,000 |
Utilizando esta táboa, búscase o nivel de significación da proba baseándose no número observado de heterocigotos. Por exemplo, se se observaron 20 heterocigotos, o nivel de significación da proba é 0,007. O gradiente de niveis de significación é bastante basto, como é normal nas probas exactas de Fisher con mostras pequenas.
Desafortunadamente, é necesario crear unha táboa coma esta para cada experimento, xa que as táboas dependen tanto de n coma de p.
O coeficiente de consanguinidade F é 1 menos a frecuencia observada dos heterocigotos por encima da esperada a partir do equilibrio de Hardy-Weinberg.
onde o valor esperado a partir do equilibrio de Hardy-Weinberg se obtén mediante
Por exemplo, para os datos de Ford anteriores:
Para dous alelos, a proba khi-cadrado sobre a calidade do axuste coas proporcións de Hardy-Weinberg é equivalente ao test de consanguinidade, F = 0.
As leis da xenética mendeliana foron redescubertas en 1900. Porén, mantívose a súa controversia durante varios anos, xa que entón non se sabía como podía producir caracteres continuos. Udny Yule (1902) argumentou contra o mendelismo porque pensaba que os alelos dominantes aumentarían en número nunha poboación. O estadounidense William E. Castle (1903) demostrou que, sen selección, as frecuencias xenotípicas permanecerían estables. Karl Pearson (1903) achou unha posición de equilibrio cos valores p = q = 0,5. Reginald Punnet, incapaz de responder ao argumento de Yule, presentoulle o problema a G. H. Hardy, un matemático británico co que xogaba ao crícket. Hardy era un matemático puro e mostraba certo desprezo polas matemáticas aplicadas; a súa opinión sobre o uso que lle daban os biólogos ás matemáticas quedou plasmada nun artigo de 1908 no que o describe como "moi simple".
Por aquel entón, o principio coñecíase como ley de Hardy no mundo angloparlante, ata que Curt Stern (1943) sinalou que xa fora formulada independentemente en 1908 polo físico alemán Wilhelm Weinberg (ver Crow 1999). Outros inentaron asociar o nome de Castle coa lei por un traballo seu de 1903, pero raramente se lle chama lei de Hardy-Weinberg-Castle.
Coa lei de Hardy-Weinberg plantáronse os alicerces da xenética de poboacións. Segundo esta lei a alteración xenética dunha poboación só pode darse por factores como mutacións, selección natural, influencias casuais, converxencias ou diverxencias individuais, de modo que o cambio xenético implica a perturbación do equilibrio establecido pola lei de Hardy-Weinberg.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.