En probabilidade e estatística, a desviación típica ou desvío padrón (tamén desvío ou desviación estándar)[1][2][3] é a medida máis común de dispersión. De xeito sinxelo, mide como están de dispersos os valores nunha colección de datos.

Thumb
Imaxe dunha distribución normal onde cada faixa ten unha largura de 1 desviación típica.

A desviación estándar está definida como a raíz cadrada da varianza. Defínese desta maneira para dar unha medida da dispersión que é un número non negativo que ten as mesmas unidades que os datos.

O termo desviación estándar foi introducido en estatística por Karl Pearson en 1894.

Interpretación e aplicación

A desviación estándar é unha medida do grao de dispersión dos datos do valor medio. Dito doutra maneira, a desviación estándar é simplemente a "media" ou variación esperada con respecto da media aritmética.

Unha desviación estándar grande indica que os puntos están lonxe da media e unha desviación pequeno indica que os datos están agrupados cerca da media.

Por exemplo, as tres mostras (0, 0, 14, 14), (0, 6, 8, 14) e (6, 6, 8, 8) cada unha teñen unha media de 7. As súas desviacións estándar son 7, 5 e 1, respectivamente. A terceira mostra ten unha desviación moito menor que as outras dúas porque os seus valores están máis próximos a 7.

A desviación estándar pode ser interpretado como unha medida de incerteza. A desviación estándar dun grupo repetido de medidas dá a precisión destas. Cando se vai determinar se un grupo de medidas está de acordo co modelo teórico, a desviación estándar desas medidas é de vital importancia: se a media das medidas está demasiado afastada da predición (coa distancia medida en desviacións estándar), entón considérase que as medidas contradín a teoría. Isto é de esperarse xa que as medicións caen fóra do rango de valores dos cales sería razoable esperar que ocorresen se o modelo teórico fose correcto.

Formulación

A desviación estándar (DS/DE) é unha medida de dispersión usada en estatística que indica canto tenden a afastarse os valores puntuais da media nunha distribución. De feito, especificamente a desviación estándar é "a media da distancia de cada punto respecto do valor medio". Adóitase representar por un S ou coa letra sigma, . Esta medida é máis estable que o percorrido e toma en consideración o valor de cada dato.

É posible calcular a desviación estándar como a raíz cadrada da integral

onde

  • O DS é a raíz cadrada da varianza da distribución

Así a varianza é a media dos cadrados das diferenzas entre cada valor da variable e a media aritmética da distribución.

Aínda que esta fórmula é correcta, na práctica interesa realizar inferencias de poboación, polo que no denominador en vez de n, úsase n-1 (Corrección de Bessel)

Tamén temos outra función máis sinxela de realizar e con menos risco de ter equivocacións:

Exemplo

Aquí móstrase como calcular a desviación estándar dun conxunto de datos. Os datos representan a idade dos membros dun grupo de nenos. { 5, 6, 8, 9 }

1. Calcular a media .

.

Neste caso, N = 4 porque hai catro datos:

      Substituíndo N por 4
  Esta é a media.

2. Calcular a desviación estándar

      Substituíndo N por 4
      Substituíndo por 7
  Esta é a desviación estándar.

Notas

Véxase tamén

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.