Les phytoalexines (du grec phytos, plante, et alekein, repousser) sont des composés phytochimiques de faible masse moléculaire synthétisés de novo en réponse généralement à un stress biotique (typiquement une attaque par des micro-organismes), parfois à un abiotique) (métaux toxiques, détergents, congélation/décongélation) et accumulés par certains tissus végétaux (y compris fongiques[1]) au niveau du site même de l'infection fongique ou bactérienne, ou du site de l'imposition du stress[2].
À la fin des années 1800, des substances produites en réaction à des blessures ont été observées pour la première fois par Harry Marshall Ward à la fin XIXe[8].
En 1940, elles ont été décrites dans la racine de l'hellébore (Veratrum grandiflorum O. Loes) et nommées phytoalexines par Müller & Börger [9].
En 1981, la phytoalexine est définie comme un «composé antimicrobien de faible poids moléculaire, synthétisé et accumulé par la plante après que celle-ci a été exposée à des microorganismes»[10].
Plusieurs substances ont été découvertes au fil du temps avec des effets similaires dans la plante mais aussi des effets sur la santé humaine, tel le resvératrol présent dans différentes plantes (raisins, fève de cacao, canneberge, arachide, rhubarbe, sorgho, Reynoutria japonica[11]) qui possèdent des propriétés cardio-protectrices[12]. Dans les années 1990, l'attention du public a été attirée sur le resvératrol du raisin rouge, qui semble avoir des effets cardiovasculaires positifs et un effet antioestrogénique[13] qui pourrait limiter le risque de certains cancers[14].
Ce composé est produit par le gène stilbéne synthase StSy[16].
La structure chimique des phytoalexines est très diversifiée.
Beaucoup de familles botaniques en produisent qui sont de la même classe chimique[6], mais le rapport entre famille végétale et classe chimique n'est pas toujours vérifié[7].
La ralexine A est produite par plusieurs plantes différentes, notamment Arabidopsis thaliana et Thellungiella halophila. Par contre, d'autres substances ne se retrouvent que chez A. thaliana telle la camalexine alors que les wasalexines A et B et la méthoxybrassenine B ne se retrouvent que chez T. halophila[17].
Certaines phytoalexines sont activées par l'action de la β-glucosidase. Cette enzyme est responsable de la production de quatre classes de phytoanticipines[18]: glucosides cyanogéniques, glucosides benzoxazinoides, avénacosides et glucosinolates. D'autres sont activées par les polyphénols[7].
De récentes études démontrent que l'élément soufre se trouve naturellement dans la plante[19]. Les propriétés de cet élément sont les mêmes dans la plante que celles pour lesquelles il est pulvérisé sur les cultures. Le soufre est considéré comme la seule phytoalexine inorganique présente dans les plantes[19].
Langcake, P., & Pryce, R. J. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9(1), 77-86 (résumé).
(en) Khan F.Z., Mildon J.M., (1978). Phytoalexin production and the resistance of Luzerne (Medicago sativa L.) to Verticillium albo-astrum, Physiol. Plant Pathol. 13: 215-221.
(en) Burns J., Yokota T., Ashihara H., Lean Michael E. J., Crozier A. (2002), Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem., 50 (11), p.3337–3340
(en) E. N. Frankel, A. L. Waterhouse and J. E. Kinsella (1993), Inhibition of human LDL oxidation by resveratrol, The Lancet, vol. 341, no 8852, p.1103-4
, R., & Serrero, G. (1999). Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. Journal of cellular physiology, 179(3), 297-304 (résumé)
(en) Giorcelli A., Sparvoli F., Mattivi F., Tava A., Balestrazzi A., Vrhovsek U., Calligari P., Bollini R.,Confalonieri M. (2004), Expression of the Stilbene Synthase (StSy) Gene from Grapevine in Transgenic White Poplar Results in High Accumulation of the Antioxidant Resveratrol Glucosides, Transgenic Research, 13 (3): 203-214.
(en) M. Soledade, C. Pedras, Adewalde M. Adio (2008). Phytoalexins ans phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: Rapalexin A, wasalexins and camalexin, Phytochemistry, 69 (4): p.889-893.
(en) Morant A V, Jørgensen K, Jørgensen C., Paquette S M., Sanchez-Perez R., Møller Birger L., Bak S. (2008), β-Glucosidases as detonators of plant chemical defense, Phytochemistry, 69 (9): 1795-1813.
Johal, G. S., & Rahe, J. E. (1990). Role of phytoalexins in the suppression of resistance of Phaseolus vulgaris to Colletotrichum lindemuthianum by glyphosate. Canadian Journal of Plant Pathology, 12(3), 225-235.
Subbaramaiah, K., Chung, W. J., Michaluart, P., Telang, N., Tanabe, T., Inoue, H., ... & Dannenberg, A. J. (1998). Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. Journal of Biological Chemistry, 273(34), 21875-21882.
Vernenghi, A., Ramiandrasoa, F., Chuilon, S., & Ravisé, A. (1987). Phytoalexines des citrus; séséline propriétés inhibitrices et modulation de synthèse. Fruits, 42(2), 103-111 (http://cat.inist.fr/?aModele=afficheN&cpsidt=8204857 résumé]).
Vernenghi, A., Einhorn, J., Kunesch, G., Malosse, C., Ramiandrasoa, F., & Ravise, A. (1986). Phytoalexines et reactions de défense de la tomate aux infections par Phytophthora parasitica et Verticillium albo-atrum. Canadian journal of botany, 64(5), 973-982 (résumé).