En mathématiques, le processus d'Ornstein-Uhlenbeck, nommé d'après Leonard Ornstein et George Uhlenbeck[1] et aussi connu sous le nom de mean-reverting process, est un processus stochastique décrit par l'équation différentielle stochastique

où θ, μ et σ sont des paramètres déterministes et Wt est le processus de Wiener.

Thumb
Trois exemples du processus d'Ornstein-Uhlenbeck avec θ=1, μ=1.2, σ=0.3:
Bleu : Valeur initiale a=0 (p. s.)
Vert : Valeur initiale a=2 (p. s.)
Rouge : Valeur initiale distribuée normalement ainsi le procédé a une mesure invariante

Solution

Cette équation est résolue par la méthode de variation des constantes. Appliquons le lemme d'Itō à la fonction pour obtenir

En intégrant de 0 à t, on obtient

d'où nous voyons

Ainsi, le premier moment est donné (en supposant que est une constante) par :

On peut utiliser l'isométrie d'Itō (en) pour calculer la covariance

Il est aussi possible (et souvent commode) de représenter (sans condition) en tant que mesure transformée du temps du processus Wiener :

ou avec condition ( donné) comme

Le processus d'Ornstein-Uhlenbeck (un exemple de processus gaussien à variance bornée) admet une distribution de probabilité stationnaire, contrairement au processus de Wiener.

L'intégrale temps de ce processus peut être utilisée pour générer un bruit avec un spectre de puissance 1/f.

Application

Le modèle de Vasicek (en) des taux d'intérêt est un exemple de processus d'Ornstein-Uhlenbeck où les coefficients sont positifs et constants.

Le Processus CIR, le modèle de Cox, Ingersoll et Ross (1985) est une extension du modèle de Vasicek et du processus d'Ornstein-Uhlenbeck qui introduit la racine carrée du taux d'intérêt instantané dans le coefficient du terme stochastique.

Bibliographie

Références

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.