L'oct-1-èn-3-ol, plus souvent dénommé octénol ou alcool de champignon car c’est l'un des principaux composants aromatiques des champignons[5], est une molécule qui attire certains insectes piqueurs (moustiques, notamment en combinaison avec du CO2[6]). C'est un alcool secondaire dérivé de l'oct-1-ène(en). Il existe sous la forme de deux énantiomères, le (R)-(-)-oct-1-én-3-ol et le (S)-(+)-oct-1-én-3-ol.
Faits en bref Identification, Nom UICPA ...
Oct-1-èn-3-ol
ÉnantiomèreR-(-) du 1-octène-3-ol (en haut) et (S)-(+)-1-octène-3-ol (en bas).
On le retrouve en faible quantité dans l’air expiré et dans la sueur des humains, et on a supposé que le répulsif insectifuge DEET fonctionnait en bloquant les récepteurs odorants de l'octénol chez les insectes[7],[8].
L'octénol est dans la nature formé par dégradation oxydative de l'acide linoléique[9].
L'octénol est produit par plusieurs plantes odorantes (notamment de type citronnelle, menthe ou lavande[10]). C’est l’un des composants du parfum de la violette[11], des mousses et des champignons, y compris les champignons comestibles ou microscopiques chez lesquels ce composé traumatique (produit lorsque les cellules sont brisées ou lors d'une attaque de pathogènes)[12] semble jouer un rôle de type ectomone: attractif olfactif d'insectes (impliqué dans leur localisation de sites de ponte ou de ressource alimentaire)[13], défense au stress, inhibition (il inhibe par exemple la germination des conidies de Penicillium paneum un contaminant important des stocks de céréales qui peut croître sur le grain à faible pH dans un milieu riche en CO2)[14]).
C’est l’une des molécules qui contribue à l’odeur des pieds, de la sueur humaine et de l’haleine humaine, ou encore à l’odeur des vaches et d’autres animaux[15].
Elle peut donner un mauvais goût au vin, goût un peu terreux et fongique, parfois confondu à celui provenant du liège, dans les vins faits avec des grappes contaminée par Botrytis cinerea[16],[17].
L'octénol est utilisé depuis quelques années dans la lutte antivectorielle (LAV)Lutte antivectorielle, souvent en combinaison avec du dioxyde de carbone, pour attirer les moustiques (ou d’autres insectes vecteurs de maladies) dans des pièges et les tuer via certains dispositifs électroniques[18],[19], présentant l’avantage de ne pas utiliser de produits aussi toxiques que le DEET ou aussi rémanents et toxiques que la plupart des insecticides habituels. Combiné avec du méta-crésol il a été testé sur la mouche tsé-tsé (Glossinidae)[20] et chez des Tabanidae (famille des taons) en Afrique[21],[22].
C’est une molécule qui pourrait être recherchée par des détecteurs électroniques d’odeurs (nez électroniques) destinés par exemple à alerter sur la présence de microchampignons source d’allergie, ou d’autres risques pour la santé ou la conservation des grains ou encore de dénaturation du goût du vin, ou parce qu’il présente un caractère toxique à certaines doses (voir plus bas)[23].
un cytotoxique (en laboratoire); pour les cellules souches embryonnaires humaines[27]; et pour des leucocytes de murins selon Gorham et Hokeness, 2012[28].
En 2013, Inamdar et al. ont montré qu’il exerce sa toxicité en interférant négativement avec l’homéostasie de la dopamine.
Mosandl, A., Heusinger, G. et Gessner, M. (1986), Analytical and sensory differentiation of 1-octen-3-ol enantiomers, Journal of Agricultural and Food Chemistry, 34(1), 119-122 (résumé).
Van Essen, P.H. et al., Differential Responses of Aedes and Culex Mosquitoes to Octenol or Light in Combination with Carbon Dioxide in Queensland, Australia, Medical and Veterinary Entomology, 63-67 1993.
Wurzenberger, M. et Grosch, W. (1984), The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora), Biochimica et Biophysica Acta - Lipids and Lipid Metabolism, 794(1), 25-30 (résumé).
Zawirska-Wojtasiak, R. (2004), Optical purity of (R)-(−)-1-octen-3-ol in the aroma of various species of edible mushrooms, Food Chemistry, 86(1), 113-118 (résumé).
Entrée « 1-Octen-3-ol » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 20 mai 2018 (JavaScript nécessaire)
Takken W. et Kline D.L (1989), Carbon dioxide and 1-octen-3-ol as mosquito attractants, Journal of the American Mosquito Control Association, 5(3), 311-316
L'oxydation d'acides gras (notamment l'acide arachidonique) constituant des membranes cellulaires, produit des dérivés hydroxylés appelés oxylipines impliqués dans les réponses au stress (régulations de gènes, activités antimicrobiennes). Parmi ces oxylipines figure un composé volatil, l'octénol. cf. (en) Inés Ponce de León, Mats Hamberg & Carmen Castresana, «Oxylipins in moss development and defense», Frontiers in Plant Science, vol.6, no483, (DOI10.3389/fpls.2015.00483), (en) Hui Zhang, Jing Peng, Yu-ren Zhang, Qiang Liu, Lei-qing Pan, Kang Tu, «Discrimination of Volatiles of Shiitakes (Lentinula edodes) Produced during Drying Process by Electronic Nose», International Journal of Food Engineering, vol.16, nos1-2, , p.1-13 (DOI10.1515/ijfe-2019-0233).
Hall, D. R., Beevor, P. S., Cork, A., Nesbitt, B. F. et Vale, G. A. (1984), 1-Octen-3-ol. A potent olfactory stimulant and attractant for tsetse isolated from cattle odours. International Journal of Tropical Insect Science, 5(5), 335-339 (résumé)
Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. Steel CC, Blackman JW et Schmidtke LM, J. Agric. Food Chem., 5 juin 2013, vol. 61, no22, p.5189-5206, DOI10.1021/jf400641r
Guérin, L., Guérin-Schneider, R., Guyot, F., Lempereur, V., Meistermann, E., Vincent, B.… et Siret, R., Déviations organoleptiques sur vins dues à la microflore fongique des raisins, Innovations Agronomiques, 17, 263-275, 2011.
Rubio-Palis, Y., Ramírez, Á., Guzman, H. et Estrada, Y. (2014), Evaluation of the Mosquito Magnet trap with and without octenol to collect mosquitoes (Diptera: Culicidae), Boletín de Malariología y Salud Ambiental, 54(1), 100-102 (résumé)
Vale, G.A. et Hall, D.R. (1985), The use of 1-octen-3-ol, acetone and carbon dioxide to improve baits for tsetse flies, Glossina spp. (Diptera: Glossinidae), Bulletin of Entomological Research, 75(2), 219-232
Amsler S., Filledier J. et Millogo R. (1994), Attractivité pour les Tabanidae de différents pièges à glossines avec ou sans attractifs olfactifs. Résultats préliminaires obtenus au Burkina Faso, Revue d’élevage et de médecine vétérinaire des pays tropicaux, 47(1), 63-68.
A. A. Inamdar, M. M. Hossain, A. I. Bernstein, G. W. Miller, J. R. Richardson et J. W. Bennett, «Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration», Proceedings of the National Academy of Sciences, vol.110, no48, , p.19561 (PMID24218591, PMCID3845153, DOI10.1073/pnas.1318830110)