Loading AI tools
droite joignant un des sommets d'un triangle au milieu du côté opposé De Wikipédia, l'encyclopédie libre
Dans son sens le plus courant, une médiane désigne, dans un triangle, une droite joignant un des trois sommets du triangle au milieu du côté opposé.
Par extension, en géométrie plane, les médianes d'un quadrilatère sont les segments reliant les milieux de deux côtés opposés.
Enfin, en géométrie dans l'espace, les médianes d'un tétraèdre sont les droites passant par un sommet du tétraèdre et par l'isobarycentre des trois autres.
Dans un triangle ABC, la médiane issue du sommet A est la droite (AI) où I désigne le milieu du segment [BC]. Le terme médiane désigne parfois le segment [AI] plutôt que la droite (AI).
Chaque médiane sépare le triangle ABC en deux triangles d'aires égales : l'aire du triangle ABI est égale à l'aire du triangle ACI.
Dans le triangle ABC, si I est le milieu de [BC] alors Cette égalité est une conséquence immédiate de la définition de I comme isobarycentre de B et C (voir le § « Réduction » de l'article sur le barycentre).
Le « premier théorème de la médiane » affirme que
Il fut énoncé par Apollonius de Perga et par Thalès.
Les trois médianes d'un triangle sont concourantes. Leur point d'intersection est l'isobarycentre des trois sommets, souvent appelé « centre de gravité du triangle ». Il est situé aux deux tiers de chaque médiane à partir du sommet correspondant. Cet isobarycentre G vérifie la relation vectorielle :
Il existe une autre démonstration, n'utilisant aucune connaissance vectorielle.
Chaque médiane d'un triangle, issue d'un sommet (A par exemple) forme avec les deux côtés adjacents du triangle et la parallèle passant par A au côté opposé un faisceau harmonique
Les deux droites reliant un sommet au milieu de chaque médiane issue des deux autres sommets, coupent le côté opposé en trois parts égales.
La plus grande ellipse inscrite dans un triangle (ellipse de Steiner) est tangente aux côtés du triangle aux pieds des médianes.
Dans tout triangle, la somme des carrés des longueurs des trois médianes , et est égale aux trois quarts de la somme des carrés des côtés :
Dans un triangle isocèle, la médiane relative à la base du triangle est un axe de symétrie du triangle. Considérées comme des segments, les deux autres médianes sont de longueur égale. Réciproquement si dans un triangle deux médianes sont de même longueur, le triangle est isocèle.
Dans un triangle rectangle, la médiane issue du sommet de l'angle droit mesure la moitié de l'hypoténuse. Réciproquement si dans un triangle la longueur d'une médiane est égale à la moitié de la longueur du côté correspondant, le triangle est rectangle.
Dans un triangle, les médianes issues de B et C sont orthogonales si et seulement si on a la relation suivante entre les côtés du triangle[2] : b2 + c2 = 5a2.
Si la médiane AM = , alors les deux autres médianes sont orthogonales.
Les médianes du quadrilatère sont les segments reliant les milieux des côtés opposés.
En géométrie dans l'espace, on appelle médianes d'un tétraèdre les droites joignant un des sommets du tétraèdre et l'isobarycentre des trois autres. Il y a donc quatre médianes dans un tétraèdre. Elles se coupent en un point qui est l'isobarycentre des quatre sommets (voir Théorème de Commandino (de)). Il en va de même pour les trois bimédianes (joignant les milieux de deux arêtes opposées).
Toutes ces propriétés (du triangle, du quadrilatère et du tétraèdre) sont des cas particuliers du théorème suivant, conséquence de l'associativité du barycentre[3],[4] :
Soit S un ensemble fini de points d'un espace affine. On appelle médiane de S tout segment joignant les isobarycentres de deux parties non vides de S complémentaires l'une de l'autre. Alors, toutes les médianes de S se coupent en l'isobarycentre de S.
(On peut même préciser, en fonction du quotient des nombres de points des deux parties, la position de l'isobarycentre sur le segment considéré.)
Dans un tétraèdre régulier (dont toutes les faces sont des triangles équilatéraux), les médianes sont aussi les hauteurs. On dit que ce tétraèdre est orthocentrique, car ses hauteurs sont concourantes (ce n'est pas le cas, en général, dans un tétraèdre, contrairement à un triangle).
La molécule de méthane CH4 illustre ce cas : les sommets sont occupés par des atomes d'hydrogène ; l'atome de carbone se situe au point de rencontre des médianes.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.