Loading AI tools
De Wikipédia, l'encyclopédie libre
En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue[1],[2],[3]. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor.
Fisher-Snedecor | |
Densité de probabilité | |
Fonction de répartition | |
Paramètres | degré de liberté |
---|---|
Support | |
Densité de probabilité | |
Fonction de répartition | |
Espérance | pour |
Mode | pour |
Variance | pour |
Asymétrie | pour |
Kurtosis normalisé | pour |
modifier |
La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Une variable aléatoire réelle distribuée selon la loi de Fisher peut être construite comme le quotient de deux variables aléatoires indépendantes, U1 et U2, distribuées chacune selon une loi du χ² et ajustées pour leurs nombres de degrés de liberté, respectivement d1 et d2 : .
La densité de probabilité d'une loi de Fisher, F(d1, d2), est donnée par pour tout réel x ≥ 0, où d1 et d2 sont des entiers positifs et B est la fonction bêta.
La fonction de répartition associée est : où I est la fonction bêta incomplète régularisée.
La loi binomiale est liée à la loi de Fisher par la propriété suivante[4]: si X suit une loi binomiale de paramètres n et p, et si k est un entier compris entre 0 et n, alors où F suit une loi de Fisher de paramètres avec
L'espérance, la variance valent respectivement pour d2 > 2 et pour d2 > 4. Pour d2 > 8, le kurtosis normalisé est .
Une généralisation de la loi de Fisher est la loi de Fisher non-centrée (en).
Le tableau suivant fournit les valeurs de certains quantiles de la loi de Fisher pour différents paramètres ν1 et ν2. Pour chaque paramètre, le quantile donné est tel que la probabilité pour qu'une variable suivant une loi de Fisher lui soit inférieur est de . Ainsi, pour et et , si X suit une loi de Fisher avec ces paramètres , on lit dans la table que
(dén.) |
(numérateur) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 20 | 30 | 40 | 50 | 60 | 80 | 100 | 200 | 500 | 1 000 | |
1 | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 248.02 | 250.10 | 251.14 | 251.77 | 252.20 | 252.72 | 253.04 | 253.68 | 254.06 | 254.19 |
2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.45 | 19.46 | 19.47 | 19.48 | 19.48 | 19.48 | 19.49 | 19.49 | 19.49 | 19.49 |
3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.66 | 8.62 | 8.59 | 8.58 | 8.57 | 8.56 | 8.55 | 8.54 | 8.53 | 8.53 |
4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.80 | 5.75 | 5.72 | 5.70 | 5.69 | 5.67 | 5.66 | 5.65 | 5.64 | 5.63 |
5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.56 | 4.50 | 4.46 | 4.44 | 4.43 | 4.41 | 4.41 | 4.39 | 4.37 | 4.37 |
6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 3.87 | 3.81 | 3.77 | 3.75 | 3.74 | 3.72 | 3.71 | 3.69 | 3.68 | 3.67 |
7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.44 | 3.38 | 3.34 | 3.32 | 3.30 | 3.29 | 3.27 | 3.25 | 3.24 | 3.23 |
8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.15 | 3.08 | 3.04 | 3.02 | 3.01 | 2.99 | 2.97 | 2.95 | 2.94 | 2.93 |
9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 2.94 | 2.86 | 2.83 | 2.80 | 2.79 | 2.77 | 2.76 | 2.73 | 2.72 | 2.71 |
10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.77 | 2.70 | 2.66 | 2.64 | 2.62 | 2.60 | 2.59 | 2.56 | 2.55 | 2.54 |
20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.12 | 2.04 | 1.99 | 1.97 | 1.95 | 1.92 | 1.91 | 1.88 | 1.86 | 1.85 |
30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 1.93 | 1.84 | 1.79 | 1.76 | 1.74 | 1.71 | 1.70 | 1.66 | 1.64 | 1.63 |
40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 1.84 | 1.74 | 1.69 | 1.66 | 1.64 | 1.61 | 1.59 | 1.55 | 1.53 | 1.52 |
50 | 4.03 | 3.18 | 2.79 | 2.56 | 2.40 | 2.29 | 2.20 | 2.13 | 2.07 | 2.03 | 1.78 | 1.69 | 1.63 | 1.60 | 1.58 | 1.54 | 1.52 | 1.48 | 1.46 | 1.45 |
60 | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.75 | 1.65 | 1.59 | 1.56 | 1.53 | 1.50 | 1.48 | 1.44 | 1.41 | 1.40 |
70 | 3.98 | 3.13 | 2.74 | 2.50 | 2.35 | 2.23 | 2.14 | 2.07 | 2.02 | 1.97 | 1.72 | 1.62 | 1.57 | 1.53 | 1.50 | 1.47 | 1.45 | 1.40 | 1.37 | 1.36 |
80 | 3.96 | 3.11 | 2.72 | 2.49 | 2.33 | 2.21 | 2.13 | 2.06 | 2.00 | 1.95 | 1.70 | 1.60 | 1.54 | 1.51 | 1.48 | 1.45 | 1.43 | 1.38 | 1.35 | 1.34 |
90 | 3.95 | 3.10 | 2.71 | 2.47 | 2.32 | 2.20 | 2.11 | 2.04 | 1.99 | 1.94 | 1.69 | 1.59 | 1.53 | 1.49 | 1.46 | 1.43 | 1.41 | 1.36 | 1.33 | 1.31 |
100 | 3.94 | 3.09 | 2.70 | 2.46 | 2.31 | 2.19 | 2.10 | 2.03 | 1.97 | 1.93 | 1.68 | 1.57 | 1.52 | 1.48 | 1.45 | 1.41 | 1.39 | 1.34 | 1.31 | 1.30 |
200 | 3.89 | 3.04 | 2.65 | 2.42 | 2.26 | 2.14 | 2.06 | 1.98 | 1.93 | 1.88 | 1.62 | 1.52 | 1.46 | 1.41 | 1.39 | 1.35 | 1.32 | 1.26 | 1.22 | 1.21 |
300 | 3.87 | 3.03 | 2.63 | 2.40 | 2.24 | 2.13 | 2.04 | 1.97 | 1.91 | 1.86 | 1.61 | 1.50 | 1.43 | 1.39 | 1.36 | 1.32 | 1.30 | 1.23 | 1.19 | 1.17 |
500 | 3.86 | 3.01 | 2.62 | 2.39 | 2.23 | 2.12 | 2.03 | 1.96 | 1.90 | 1.85 | 1.59 | 1.48 | 1.42 | 1.38 | 1.35 | 1.30 | 1.28 | 1.21 | 1.16 | 1.14 |
1 000 | 3.85 | 3.00 | 2.61 | 2.38 | 2.22 | 2.11 | 2.02 | 1.95 | 1.89 | 1.84 | 1.58 | 1.47 | 1.41 | 1.36 | 1.33 | 1.29 | 1.26 | 1.19 | 1.13 | 1.11 |
2 000 | 3.85 | 3.00 | 2.61 | 2.38 | 2.22 | 2.10 | 2.01 | 1.94 | 1.88 | 1.84 | 1.58 | 1.46 | 1.40 | 1.36 | 1.32 | 1.28 | 1.25 | 1.18 | 1.12 | 1.09 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.