Remove ads
aristocrate et pionnier français du calcul infinitésimale, marquis de L'Hôpital De Wikipédia, l'encyclopédie libre
Guillaume François Antoine de L'Hôpital (1661-1704), parfois orthographié de L'Hospital, marquis[1], est un mathématicien français[2]. Il est connu pour la règle qui porte son nom : la règle de L'Hôpital, qui permet de calculer la valeur d'une limite pour une fraction où le numérateur et le dénominateur tendent tous deux vers zéro.
Naissance |
à Paris (France) |
---|---|
Décès |
à Paris |
Nationalité | Royaume de France |
Domaines | Mathématiques |
---|---|
Institutions | Académie des sciences |
Renommé pour | Travaux sur le calcul différentiel |
Il est aussi l'auteur du premier livre en français sur le calcul différentiel : Analyse des infiniment petits pour l'intelligence des lignes courbes. Publié en 1696, ce texte s'appuie sur les leçons que lui a données Jean Bernoulli, pendant l'hiver 1691-1692, sur le calcul différentiel inventé par Gottfried Wilhelm Leibniz en 1684.
Apparenté au chancelier Michel de l'Hôpital, fils d'Anne de l'Hôpital, lieutenant-général des Armées du Roi et premier écuyer de Gaston d'Orléans, et d'Élisabeth Gobelin[3], Guillaume François Antoine de l'Hôpital fut capitaine de cavalerie dans le régiment Colonel-Général. Selon Fontenelle, c'est sa myopie qui le poussa à quitter l'armée.
En 1688, il se maria à Marie-Charlotte de Romilley de la Chesnelaye, mathématicienne également. Il se lia avec Christian Huygens, Gottfried Wilhelm Leibniz et les frères Bernoulli. En 1691, il invita Jean Bernoulli dans sa résidence d'Oucques pour qu'il lui enseignât le calcul différentiel alors naissant.
Guillaume de L'Hôpital devint membre de l'Académie des sciences en 1693. Il déposa la même année un mémoire sur une Méthode facile pour déterminer les points des caustiques par réfraction, avec une méthode nouvelle de trouver les développements, puis, en 1694, un mémoire sur les Nouvelles remarques sur les développées, sur déterminer les points d'inflexion et sur les plus grandes et les plus petites quantités. Son ouvrage « Analyse des infiniment petits pour l'intelligence des lignes courbes », paru en 1696, connut plusieurs éditions au XVIIIe siècle, et joua un rôle important en France dans la vulgarisation de cette technique.
Son Traité analytique des sections coniques, pensé comme un développement de la Géométrie de Descartes, était presque fini, lorsqu'au commencement de 1704 il fut pris d'une fièvre qui ne paraissait d'abord aucunement dangereuse mais qui détermina une attaque d'apoplexie dont il mourut le lendemain . Ses proches attribuèrent sa mort à une pratique excessive des mathématiques. Son traité est publié à titre posthume en 1707.
Son nom s'écrit aussi L'Hospital[4]. Contrairement à ce qu'on pourrait croire, l'accent circonflexe n'est pas un anachronisme : si son livre ne comporte pas de nom d'auteur, son ami Varignon, dans les compléments qu'il publia au livre (1725), écrit toujours son nom avec l'accent circonflexe, et dans l'Encyclopédie de Diderot et D'Alembert, c'est « L'Hopital » qu'on trouve, sans accent ni s.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.