Diagramme commutatif

De Wikipédia, l'encyclopédie libre

Diagramme commutatif

En mathématiques, et plus spécialement dans les applications de la théorie des catégories, un diagramme commutatif est un diagramme d'objets et de morphismes tels que, si l'on suit à travers le diagramme un chemin d'un objet à un autre, le résultat par composition des morphismes ne dépend que de l'objet de départ et de l'objet d'arrivée.

Thumb
Grothendieck-Riemann-Roch ( "Das Diagramm ist kommutatif !")

Exemple



Le premier théorème d'isomorphisme est un triangle commutatif comme suit :

Thumb

Puisque f = h ∘ φ, le diagramme de gauche est commutatif ; et puisque φ = k ∘ f, il en est de même pour le diagramme de droite.

Sur le diagramme de gauche, il est possible d'aller de G à im f par deux chemins différents : soit directement grâce à l'application f, soit par composition des applications h et φ. De même, le diagramme de droite est commutatif, puisqu'on peut aller de G à G/ ker f soit directement par l'application φ, soit par la composition de k par f en passant par l'objet intermédiaire im f.


Thumb

De la même manière, le carré ci-dessus est commutatif si yw = zx.

Vérification de la commutativité

Thumb
Un exemple de diagramme commutatif

La commutativité est aisément compréhensible pour un polygone avec un nombre fini de côtés (y compris seulement 1 ou 2), et un diagramme est commutatif si tout sous-diagramme polygonal est commutatif.


références

Voir aussi

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.