Corps euclidien

De Wikipédia, l'encyclopédie libre

En algèbre, un corps euclidien est un corps totalement ordonné dans lequel tout élément positif est un carré.

Propriétés

Exemples

Contre-exemples

Clôture euclidienne

Soit K un corps ordonné. Une clôture euclidienne de K est un corps euclidien contenant K et minimal pour cette propriété[4]. Les clôtures euclidiennes de K sont les sous-corps de codimension 2 de sa clôture quadratique K2 et sont isomorphes (en tant que corps ordonnés)[4],[5] ; ce sont aussi les intersections de K2 avec les clôtures réelles de K[4], ou encore, les extensions de corps ordonné de K maximales parmi les sous-corps de K2[6].

Pour toute partie non vide M de ℝ, la clôture euclidienne du corps ℚ(M) engendré par M est l'ensemble des longueurs constructibles à la règle et au compas à partir de celles appartenant à M. La clôture euclidienne d'un sous-corps K de ℝ est la réunion de tous les corps obtenus à partir de K par une tour d'extensions quadratiques réelles.

Notes et références

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.