En 1994, Claude Lemaréchal et Roger Wets reçoivent chacun le prix George-B.-Dantzig. Récompensant "des recherches originales qui ont eu un impact majeur sur le domaine de la programmation mathématique", le prix Dantzig est décerné par la Society for Industrial and Applied Mathematics (SIAM) et la Mathematical Programming Society (MPS)[1].
Peu après son entrée à l'INRIA (alors dénommé «IRIA»), Lemaréchal a pour mission d'aider un verrier sur un problème d'ordonnancement de sa production, problème dont la première formulation nécessitait de minimiser une fonction non convexe. Pour ce problème de minimisation non convexe, Lemaréchal a appliqué la théorie de la dualité lagrangienne décrite dans Lasdon's Optimization Theory for Large Systems[2],[3].
Parce que le problème primal n'était pas convexe, il n'y avait aucune garantie qu'une solution au problème dual fournirait des informations utiles sur le primal. Néanmoins, le double problème fournissait des informations utiles[4].
Le succès de Lemaréchal avec les méthodes duales lagrangiennes sur les problèmes de programmation non linéaire avec nonconvexités a intéressé Ivar Ekeland et Jean-Pierre Aubin, qui ont appliqué le lemme de Shapley-Folkman pour expliquer le succès de Lemaréchal[5],[6]. L'analyse Aubin-Ekeland des écarts de dualité a considéré la fermeture convexe d'un problème de minimisation non convexe - c'est-à-dire le problème défini par la coque convexe fermée de l'épigraphe du problème d'origine. Suivant Ekeland et Aubin, des applications similaires du lemme de Shapley–Folkman(en) sont décrites dans des monographies d'optimisation [6],[7] et des manuels[8]. Ces développements ont été catalysés par la démonstration de Lemaréchal que les méthodes duales lagrangiennes étaient utiles sur certains problèmes d'optimisation qui manquaient de convexité.
Les recherches de Lemaréchal ont également conduit à ses travaux sur les méthodes de sous-gradients(en) (conjugués(en)) et sur les méthodes de descente de faisceaux pour les problèmes de minimisation convexe.
Biographique
Aardal, «Optima interview Claude Lemaréchal», Optima: Mathematical Programming Society Newsletter, , p.2–4 (lire en ligne)
Jean-Baptiste Hiriart-Urruty et Claude Lemaréchal, Fundamentals of convex analysis, Berlin, Springer-Verlag, coll.«Grundlehren Text Editions», , x+259 (ISBN978-3-540-42205-1, MR1865628)
Jean-Baptiste Hiriart-Urruty et Claude Lemaréchal, Convex analysis and minimization algorithms, Volume I: Fundamentals, vol.305, Berlin, Springer-Verlag, coll.«Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]», , xviii+417 (ISBN978-3-540-56850-6, MR1261420)
Jean-Baptiste Hiriart-Urruty et Claude Lemaréchal, Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods, vol.306, Berlin, Springer-Verlag, coll.«Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]», , xviii+346 (ISBN978-3-540-56852-0, MR1295240)
Claude Lemaréchal, Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000, vol.2241, Berlin, Springer-Verlag, coll.«Lecture Notes in Computer Science», , 112–156p. (ISBN978-3-540-42877-0, DOI10.1007/3-540-45586-8_4, MR1900016), «Lagrangian relaxation»
Claude Lemaréchal, Optimization, vol.1, Amsterdam, North-Holland Publishing Co., coll.«Handbooks in operations research and management science», , 529–572p. (ISBN978-0-444-87284-5, DOI10.1016/S0927-0507(89)01008-X, MR1105106), «Nondifferentiable optimization»
(en) Claude Lemaréchal, «Utilisation de la dualité dans les problémes non convexes Use of duality for non-convex problems», INRIA, Domaine de Voluceau, Rocquencourt, no16, , p.41.
Les expériences de Lemaréchal ont été discutées dans des publications ultérieures:
(en) Karen Aardal, «Optima interview Claude Lemaréchal», Optima: Mathematical Programming Society Newsletter, , p.2–4 (lire en ligne).
(en) Jean-Baptiste Hiriart-Urruty et Claude Lemaréchal, Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods, vol.306, Berlin, Springer-Verlag, , 136–193 (and Bibliographical comments on pp. 334–335) (ISBN978-3-540-56852-0, MR1295240), chap.XII Abstract duality for practitioners.
Aubin et Ekeland, «Estimates of the duality gap in nonconvex optimization», Mathematics of Operations Research, vol.1, no3, , p.225–245 (DOI10.1287/moor.1.3.225, JSTOR3689565, MR449695)
Page 373: (en) Ivar Ekeland, Convex analysis and variational problems, vol.1, Amsterdam, North-Holland Publishing Co., , 357–373p. (MR463994), chap.Appendix I: An a priori estimate in convex programming.
Page 373: (en) Ivar Ekeland, Convex analysis and variational problems, vol.28, Philadelphia, PA, Society for Industrial and Applied Mathematics (SIAM), , 357–373p. (ISBN978-0-89871-450-0, MR1727362), chap.Appendix I: An a priori estimate in convex programming.
(en) Jean-Pierre Aubin, Mathematical methods of game and economic theory, Mineola, NY, Dover Publications, Inc., , xxxii+616 (ISBN978-0-486-46265-3, MR2449499), chap.14.2 Duality in the case of non-convex integral criterion and constraints, pages 458-476 (especially 14.2.3 The Shapley-Folkman theorem, pages 463-465).
En plus de présenter une analyse des lacunes de la dualité à la manière d'Ekeland (page 381), Bertsekas (1982) applique les méthodes de la dualité lagrangienne à l'ordonnancement (processus de production) de centrales électriques ("unit commitment problems"), où la non-convexité apparaît à cause de la programmation en nombres entiers: (en) Dimitri P. Bertsekas, Constrained optimization and Lagrange multiplier methods, New York, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, , 364–381p. (ISBN978-0-12-093480-5, Bibcode1982colm.book.....B, MR690767), chap.5.6 Large scale separable integer programming problems and the exponential method of multipliers.
Voir Schéma 5.1.9 (page 496): (en) Dimitri P. Bertsekas, Nonlinear Programming, Cambridge, MA., Athena Scientific, , 494–498p. (ISBN978-1-886529-00-7), chap.5.1.6 Separable problems and their geometry.
Pages 267–279: (en) Jean-Baptiste Hiriart-Urruty, Optimisation et analyse convexe, Paris, Presses Universitaires de France, , 247–306p. (ISBN978-2-13-048983-2, MR1613914), chap.6 Ensembles et fonctions convexes. Projection sur un convexe fermé.